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1. Cubic Equations

1.1. Cardano’s Formulae

Let x be a variable and C denote the set of complex numbers. Define C [x] to be the set of

polynomials with complex coefficients, i.e.

C [x] =
{

a0 +a1x+ . . .+an−1xn−1 +anxn : an ̸= 0,ai ∈ C for all 0 ≤ i ≤ n
}
.

Here, the degree of the polynomial is defined to be n. Note that the degree of the constant polynomial

p(x) = a0, where a0 ̸= 0, is 0, and the degree of p(x) = 0 is not defined. Moreover, recall that a

polynomial of degree n ≥ 1 is monic if an = 1. In general, we may replace C by a commutative ring

R and define a polynomial of degree n over R, say p(x) ∈ R [x], as an expression of the form

a0 +a1x+ . . .+an−1xn−1 +anxn where ai ∈ R for all 0 ≤ i ≤ n and an ̸= 0.

Let α ∈ C. Then, α is a solution of the polynomial equation

anxn +an−1xn−1 + . . .+a0 = 0

where ai ∈ C for all 0 ≤ i ≤ n if

anα
n +an−1α

n−1 + . . .+a1α +a0 = 0.

Since C is a field and an ̸= 0, we may divide the polynomial equation by an and consider the

polynomial equation where the polynomial is monic. The solutions to the polynomial equation are

known as the roots or zeros of the polynomial.

One recalls from O-Level that the solution to the quadratic equation

x2 +bx+ c is α =
−b±

√
b2 −4c

2
.

This can be easily derived using a method known as ‘completing the square’. The quantity nested

within the square root, b2 −4c, is known as the discriminant of the polynomial x2 +bx+ c.

Suppose the two roots of the quadratic equation x2 +bx+ c = 0 are

α =
−b+

√
b2 −4c

2
and β =

−b−
√

b2 −4c
2

.

Then, one verifies that (α −β )2 = b2 − 4c, which implies that the discriminant of the quadratic

polynomial can be viewed as the square of the difference between its two roots. From this perspective,

it allows us to define the discriminant of polynomials of degrees greater than 2.
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Definition 1.1 (discriminant). Let

p(x) = xn +an−1xn−1 + . . .+a1x+a0.

The discriminant of p(x), denoted by ∆, is defined to be

∆ = ∏
1≤i< j≤n

(
αi −α j

)2 where α1, . . . ,αn are solutions to the equation p(x) = 0.

This motivates our discussion of Cardano’s formulae. Recall that a cubic monic polynomial

equation is of the form

x3 +bx2 + cx+d = 0.

Using the substitution x = y−b/3, we obtain the following depressed cubic equation:

y3 + py+q = 0 where p =−b2

3
and q =

2
27

b3 − bc
3
+d.

Even if the coefficient of the x3 term is not 1, we can always transform any cubic equation to a

depressed cubic (will discuss this in due course). In order to find the solutions to a cubic polynomial

equation, it suffices to find the solutions to the reduced cubic polynomial equation.

When p = 0, the equation y3 + py+q has obvious solutions

−q1/3,−ωq1/3,−ω
2q1/3 where ω = e2πi/3 is a cube root of unity.

This is not that interesting, so we shall consider the case where p ̸= 0. Let y = u+v, and observe that

the depressed cubic now becomes

u3 + v3 +3uv(u+ v)+ p(u+ v)+q = 0.

We need to choose u and v aptly. In fact, the substitution 3uv = −p works. Noting that p ̸= 0

(consequently u ̸= 0), we see that

u3 + v3 +q = u3 +
(
− p

3u

)3
+q = 0.

This yields

u6 +qu3 − p
27

= 0 which implies u3 =−q
2
±
√

q2 +4p3/27
2

We omit the remaining details of the derivation as they are trivial.
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Theorem 1.1 (Cardano’s formula). The solutions to the depressed cubic equation y3 + py+

q = 0 are

y1 = z1 + z2

y2 = ωz1 +ω
2z2

y3 = ω
2z1 +ωz2

where

z1 =
3

√√√√1
2

(
−q+

√
q2 +

4p3

27

)
and z2 =− p

3z1

1.2. Permutations of Roots

In Cardano’s formula (Theorem 1.1), we can express z1 and z2 in terms of y1,y2,y3 and deduce the

six solutions of z6+qz3− p3/27 = 0 (recall we dealt with the polynomial equation u6+qu3− p/27 =

0 earlier). In particular, the six solutions are

z1 =
1
3
(
y1 +ω

2y2 +ωy3
)

z2 =
1
3
(
y1 +ωy2 +ω

2y3
)

ωz1 =
1
3
(
ωy1 + y2 +ω

2y3
)

ωz2 =
1
3
(
ωy1 +ω

2y2 + y3
)

ω
2z1 =

1
3
(
ω

2y1 +ωy2 + y3
)

ω
2z2 =

1
3
(
ω

2y1 + y2 +ωy3
)

Recall from MA2202 that the symmetric group on 3 letters, S3, can be interpreted as the set of

bijections from {1,2,3} to {1,2,3}. For any permutation σ ∈ S3, we define

σ ◦ y j = yσ( j).

Observe that S3 permutes the six roots of z6 +qz3 − p3/27. For example, the permutation σ = (123)

leads to the following identities:

(123)◦ z1 = ωz1 (123)◦ωz1 = ω
2z1 (123)◦ω

2z1 = z1

To see why this makes sense, we only justify (123) ◦ z1 = ωz1. Since 1 is mapped to 2, then

σ ◦ y1 = y2; since 2 is mapped to 3 and 3 is mapped to 1, then σ ◦ y2 = y3 and σ ◦ y3 = y1.

As such, we see that (123) ◦ z3
1 = z3

1, implying that it is the invariance of z3
1, under the action of

the permutation (123), that allows us to determine the roots of the cubic polynomial.
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Also, observe that

(1)(23)◦ z1 = (23)z1 = z2.

Applying (123) and (123)(123) to z2, we deduce that z1 is sent to all the roots of the cubic

polynomial z6 +qz3 − p3/27 via the action of S3.

1.3. Cubic Equations over R

Recall that the discriminant of the depressed cubic y3 + py+q is

∆ = (y1 − y2)
2 (y1 − y3)

2 (y2 − y3)
2 .

One notes that ∆ can also be written as ∆ = −4p3 −27q2. Now, we assume that y3 + py+q = 0 has

distinct roots y1,y2,y3 so that ∆ is a non-zero real number. There is a nice result on the roots of the

cubic equation y3 + py+q = 0 depending on the sign of ∆ (Theorem 1.2).

Theorem 1.2. Suppose the cubic polynomial y3 + py + q ∈ R [y] has distinct roots and

discriminant ∆ ̸= 0. Then, the following hold:

(i) ∆ > 0 if and only if the roots are all real

(ii) ∆< 0 if and only if the equation has only one real root and the other two roots are complex

conjugates of each other

Example 1.1 (Cox p. 22 Question 9). When divided by 4,

4t3 −3t − cos3θ gives t3 − 3
4

t − 1
4

cos3θ which is monic.

Show that the discriminant of this polynomial is 27
16 sin2 3θ .

Solution. Let α1,α2,α3 be the roots of the polynomial equation. By Vieta’s formula,

α1 +α2 +α3 = 0

α1α2 +α1α3 +α2α3 =−3
4

α1α2α3 =
1
4

cos3θ

The discriminant is

∆ = (α1 −α2)
2 (α1 −α3)

2 (α2 −α3)
2

for which with some tedious algebraic manipulation, one can show that ∆ is indeed the aforementioned

value. □

Example 1.2 (Bombelli). In 1550, Rafael Bombelli applied Cardano’s formula to the cubic y3 −
15y− 4 = 0. This polynomial has discriminant ∆ = 13068 > 0, so all three roots are real. Bombelli
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noted that one root is y = 4 and used Cardano’s formula to deduce that

4 = 3
√

2+11i+ 3
√

2−11i for appropriate choices of cube roots.

To understand this formula, Bombelli noted that (2+ i)3 = 2+11i and (2− i)3 = 11− i. Hence, the

cube roots in the above formula are 2+ i and 2− i, for which their sum is 4.

From this perspective of Cardano’s method, complex numbers are unavoidable when ∆ > 0.

However, is it possible that there are other ways of expressing the roots which only involve real

radicals? For the case when the polynomial is an irreducible cubic with real roots, the answer is no.

We will discuss this further when we introduce the Fundamental Theorem of Galois Theory.

François Viète developed a trigonometric approach to solve cubic equations, providing a way to obtain

real solutions without resorting to complex numbers. Although Cardano’s formulas often lead to com-

plex values even for cubics with positive discriminants, Viète’s method uses trigonometric functions

instead of radicals to reveal purely real solutions. This approach, known as the trigonometric solution

of the cubic, sidesteps complex numbers by leveraging trigonometric identities and transformations.

Our starting point is the trigonometric identity

cos3θ = 4cos3
θ −3cosθ which can be derived using the addition formula.

If we write this as 4cos3 θ − 3cosθ − cos3θ = 0, then t1 = cosθ is a root of the cubic equation

t3−3t−cos3θ = 0. However, replacing θ with α = θ +2π/3 gives the same cubic polynomial since

cos3α = cos3θ . It follows that t2 = cosα = cos(θ +2π/3) is another root of 4t3 −3t − cos3θ = 0.

Similarly, t3 = cos(θ +4π/3) is also a root.
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2. Symmetric Polynomials and Roots of Polynomials

2.1. Symmetric Polynomials

Definition 2.1. A polynomial in x1, . . . ,xn with coefficients in F is a finite sum of terms, which

are expressions of the form

cxk1
1 . . .xkn

n where c ∈ F and k j ∈ Z≥0.

A term is non-zero if c ̸= 0. The set of polynomials in n variables with coefficients in F is

denoted by F [x1, . . . ,xn].

Definition 2.2 (discriminant). Given n ≥ 2 variables x1, . . . ,xn over a field F , the discriminant

associated with x1, . . . ,xn is defined to be

∆(x1, . . . ,xn) = ∏
i< j

(
xi − x j

)2 ∈ F [x1, . . . ,xn] .

Example 2.1. Adapted from page 51 Question 3 of Cox’s textbook, we shall verify that the

discriminant formula holds for a monic quadratic polynomial, i.e. consider f = x2 + bx+ c ∈ F [x].

Then we shall justify that ∆( f ) = b2 − 4c. To see why, let α and β denote the roots of f . Then, we

have

∆( f ) = (α −β )2

= (α +β )2 −4αβ

= b2 −4c by Vieta’s formula

Definition 2.3 (degree). We have the following:

the total degree of a non-zero term cxk1
1 . . .xkn

n is k1 + . . .+ kn

the total degree of a polynomial f = f (x1, . . . ,xn) in n variables is

the maximum of the total degree of the non-zero term of f .

The degree of the polynomial is denoted by deg( f ).

Example 2.2. The discriminant of a polynomial in n variables, ∆(x1, . . . ,xn), is of degree n(n−1).

Note that if

f (x1, . . . ,xn) and g(x1, . . . ,xn) are non-zero polynomials,

then

deg( f )+deg(g) = deg( f g) .
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This shows that F [x1, . . . ,xn] is an integral domain (recall from MA3201). In fact, a stronger claim

is that F [x1, . . . ,xn] is a unique factorisation domain (UFD). Recall from MA3201 that an integral

domain R is a UFD if every non-zero element of R can be written in the form

up1 . . . pk where u is a unit and pi are irreducibles in R.

Recall that Sn is a group under the composition of bijections. The group Sn acts on F [x1, . . . ,xn] via

the following way:

σ · f (x1, . . . ,xn) = f
(
xσ(1), . . . ,xσ(n)

)
where σ ∈ Sn and f (x1, . . . ,xn) ∈ F [x1, . . . ,xn] .

Definition 2.4 (symmetric polynomial). A polynomial f (x1, . . . ,xn) ∈ C [x1, . . . ,xn] is sym-

metric if

σ · f (x1, . . . ,xn) = f (x1, . . . ,xn) for any σ ∈ Sn.

Example 2.3 (∆ is a symmetric polynomial). Another representation of the discriminant is as

follows:

∆(x1, . . . ,xn) = (−1)n(n−1)/2
∏
i̸= j

(
xi − x j

)
i.e. it can be shown that

∏
i< j

(
xi − x j

)2
= (−1)n(n−1)/2

∏
i̸= j

(
xi − x j

)
.

Recall from MA2202 that for any permutation σ ∈ Sn, σ is a disjoint product of cycles, where each

cycle can be written as a product of transpositions. In other words,

(a1 a2 . . . an−1 an) = (a1 an) . . .(a1 a3)(a1 a2) ,

where the map is read from right to left. One can show that ∆ is invariant under the action of 2-cycles,

and consequently, ∆ is a symmetric polynomial.

Definition 2.5 (elementary symmetric polynomials). Given variables x1, . . . ,xn, define

σn, j (x1, . . . ,xn) = ∑
1≤m1<...<m j≤n

xm1 . . .xm j to be the elementary symmetric polynomials.

This is the sum of all possible products of j distinct variables.

Example 2.4. We have

σn,0 (x1, . . . ,xn) = 1 and σn,1 (x1, . . . ,xn) =
n

∑
i=1

xi.

Moreover, σn,n (x1, . . . ,xn) = x1 . . .xn.

Theorem 2.1 is a key property of the elementary symmetric polynomials.
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Theorem 2.1. Let x1, . . . ,xn be variables over a field F . Then given another variable x, we

have

(x− x1) . . .(x− xn) = xn −σn,1xn−1 + . . .+(−1)r
σn,rxn−r + . . .+(−1)n

σn,n.

Here, σn, j = σn, j (x1, . . . ,xn).

In fact, it is clear from Theorem 2.1 that σn, j are symmetric polynomials.

The elementary symmetric polynomials serve as a basis for the set of symmetric polynomials. In

fact, we have a precise statement for it.

Theorem 2.2. Any symmetric polynomial in F [x1, . . . ,xn] can be uniquely written as a

polynomial in σn,1, . . . ,σn,n with coefficients in F .

Example 2.5 (Cox p. 42 Question 18). Suppose the complex numbers α,β ,γ satisfy the equations

α +β + γ = 3

α
2 +β

2 + γ
2 = 5

α
3 +β

3 + γ
3 = 12

Prove that αn +β n + γn is always an integer for all n ≥ 4. Also, evaluate α4 +β 4 + γ4.

Solution. Consider the monic polynomial (leading coefficient 1) p(x) = x3 + bx2 + cx+ d. Say that

the roots of the equation p(x) = 0 are α,β ,γ . As such, by Vieta’s formula, we have

α +β + γ =−b so b =−3.

Squaring the first equation yields the identity

(α +β + γ)2 = α
2 +β

2 + γ
2 +2αβ +2βγ +2γα

9 = 5+2(αβ +βγ + γα)

αβ +βγ + γα = 2

By Vieta’s formula again, we have αβ +βγ+γα = c, so c= 2. Lastly, cubing the first equation yields

(α +β + γ)3 = α
3 +β

3 + γ
3 +3α

2
β +3α

2
γ +3β

2
α +3β

2
γ +3γ

2
α +3γ

2
β +6αβγ

27 = 12+3α
2(β + γ)+3β

2(γ +α)+3γ
2(α +β )+6αβγ

5 = α
2(3−α)+β

2(3−β )+ γ
2(3− γ)+2αβγ

5 = 3α
2 −α

3 +3β
2 −β

3 +3γ
2 − γ

3 +2αβγ

5 = 15−12+2αβγ

αβγ = 1
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By Vieta’s formula one more time, we have αβγ =−d, so d =−1. As such, α,β ,γ are roots of the

cubic equation x3 − 3x2 + 2x− 1 = 0. For α ≥ 4, we have αn = 3αn−1 − 2αn−2 +αn−3, which is

merely a consequence of the factor theorem. We obtain similar equations for β and γ . Define sn to be

sn = α
n +β

n + γ
n so sn = 3sn−1 −2sn−2 + sn−3.

The rest follows by induction as we have s0 = 3 and s1,s2,s3 are integers as well. In particular,

s4 = 35. □
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3. Extension Fields

3.1. Elements of Extension Fields

Recall from MA3201 that

a field F is a ring such that every non-zero element has a multiplicative inverse.

For any field F , observe that n · 1F is the sum of n copies of 1F , where 1F is the identity element.

We shall abbreviate the notation as n1F . If n1F = 0 and n is the smallest positive integer for which

this happens, then n must be a prime. Suppose otherwise, then n can be written as n = ab, with either

a1F = 0 or b1F = 0, contradicting the minimality of n (in fact, those who have picked up MA1100

can understand this too). As such,

p1F = 0 for some prime p.

When this happens, we say that the field F has characteristic p, and we write char(F) = p. If n1F ̸= 0

for all non-zero integers, then the field F has characteristic 0.

Example 3.1. The field of complex numbers C is of characteristic 0, so char(C) = 0.

Example 3.2. For p prime, the field Z/pZ is of characteristic p.

As such, given a field F , can we construct new fields that contain F (idea of field extension coming

up). To answer this question, we recall the following construction from MA3201. In particular, C can

be constructed from R [x]/
(
x2 +1

)
R [x], where

(
x2 +1

)
is the principal ideal generated by x2 +1.

We can construct more fields using a technique similar to constructing C from R [x]/
(
x2 +1

)
R [x].

Definition 3.1 (prime subfield). Let F be a field. The prime subfield of F is

the subfield generated by 1F .

From Definition 3.1, we infer that if charF = 0, then its prime subfield is Q. On the other hand, if

charF = p, then the prime subfield is Fp which is the finite field of p elements.

Definition 3.2 (field extension). Let

ϕ : F → L be a ring homomorphism of fields.

Then, L is a field extension of F via ϕ . We will usually identify F with its image ϕ (F) =

{ϕ (a) : a ∈ F} ⊆ L and write F ⊆ L. Moreover, the following are equivalent:

L is a field extension of F and F is a subfield of F

In Definition 3.2, we mentioned that for a field extension F ⊆ L is such that F can be identified

with its image ϕ (F), where ϕ : F → L is a ring homomorphism. In fact, this idea consistently appears
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throughout Mathematics. For example, we can consider Z⊆Q. Since Q is the field of fractions of the

integral domain Z, then an element a/b ∈Q is precisely the equivalence class

a
b
= {(c,d) : c,d ∈ Z,d ̸= 0,ad = bc} .

Using this idea, an integer n ∈ Z does not equal to the fraction n/1 ∈Q since n is an integer and n/1

is an infinite set of ordered pairs of integers. Rather, we have the ring homomorphism

φ : Z→Q where φ : n 7→ n/1.

As such, we write Z⊆Q by identifying Z with φ (Z).

Theorem 3.1 (fundamental theorem of field theory). If f (x) ∈ F [x] is irreducible, then

there exists an extension field F ⊆ L and α ∈ L such that f (α) = 0.

Example 3.3. Let f (x) = x2 + 1 ∈ Q [x], where Q [x] refers to the set of polynomials with rational

coefficients. Viewing f (x) as an element of L [x] =
(
Q [x]/

(
x2 +1

))
[x], we have

f
(
x+
(
x2 +1

))
=
(
x+
(
x2 +1

))2
+1

= x2 +2x
(
x2 +1

)
+
(
x2 +1

)2
+1

= x2 +1+
(
x2 +1

)
by ideal absorption

=
(
x2 +1

)
by ideal absorption

Recall that α ∈ L is a root of f (x) if and only if x−α is a factor of f (x). As such, to say that a field

L contains all roots of f (x) is the same as saying that

f (x) = an (x−α1) . . .(x−α) where α1, . . . ,αn ∈ L.

Definition 3.3 (complete splitting property). Let f (x) ∈ F [x] and F ⊆ L is a field extension.

If

f (x) = an (x−α1) . . .(x−αn) where α1, . . . ,αn ∈ L,

then f splits completely over L.

Theorem 3.2 (Kronecker). Let F be a field and f (x) ∈ F [x] be a polynomial of degree n > 0.

Then,

there exists a field extension F ⊆ L such that f splits completely over L.

Kronecker’s theorem (Theorem 3.2) effectively shows that for any polynoml f (x) ∈ F [x], f splits

completely in some field extension of F . One can prove this result using induction, where the variable

involved is n, the degree of f .
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Definition 3.4 (algebraic and transcendental elements). An element α is algebraic over F if

f (α) = 0 for some f (x) ∈ F [x]. If α is not algebraic over F , then α is transcendetal over F .

Example 3.4.
√

2 ∈ R is algebraic over Q since
√

2 is a root of x2 −2 ∈Q [x].

Example 3.5. ζn = e2πi/n ∈ C is algebraic over Q since it is a root of xn −1 ∈Q [x]. ζn is known as

an nth root of unity since raising it to the power of n yields 1. Equivalently, we can think of this as a

complex number on an Argand diagram of distance 1 from the origin. We will see this again when we

encounter cyclotomic polynomials.

Example 3.6 (Lindemann-Weierstrass theorem). e and π are transcendental over Q, but this is not

easy to prove.

Example 3.7. We claim that
√

2+
√

3 is algebraic over Q. To see why, consider the polynomial(
x−

√
2−

√
3
)(

x−
√

2+
√

3
)(

x+
√

2−
√

3
)(

x+
√

2+
√

3
)
,

for which upon expansion yields x4−10x2+1. So,
√

2+
√

3 is the root of a non-constant polynomial

in Q [x].

Example 3.8 (Cox p. 80 Question 1). Let α ∈ L\{0} be algebraic over a subfield F . Prove that

1
α

is also algebraic over F.

Solution. Since α is algebraic over F , then there exists a polynomial f ∈ F [x] such that f (α) = 0.

Define g to be the polynomial xn f (1/x), where n = deg( f ). To see why g is still a polynomial,

consider

f (x) = a0 +a1x+ . . .+anxn so xn f
(

1
x

)
= xn

[
a0 +a1

(
1
x

)
+ . . .+an

(
1
x

)n]
= an +an−1x+ . . .+a1xn−1 +a0xn

We have g(1/α) = f (α)/αn = 0 since f (α) = 0 which shows that 1/α is algebraic over F . □

Definition 3.5 (algebraically closed field). A field K is algebraically closed if all elements α

which are algebraic over K are already in K, i.e.

all polynomials f (x) ∈ K [x] split completely over K.

Example 3.9. C is a classic example of an algebraically closed field. On the other hand, R is not

algebraically closed. To see why, it suffices to find

a polynomial equation R [x] ∋ p(x) = 0 that do not have solutions in R.

An example of a polynomial equation is x2 +1 = 0.

In fact, C being algebraically closed is a consequence of the fundamental theorem of algebra.
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Definition 3.6 (algebraic closure). Let F ⊆ K be a field extension of a field F . Then, K is an

algebraic closure of F if

every element in K is algebraic over F and K is algebraically closed.

Example 3.10. C is an algebraic closure of R as C is algebraically closed and every element in C
is algebraic over R. For the latter, say z0 = a+ bi is the root of a polynomial f (x) ∈ R [x]. By the

conjugate root theorem, z∗0 = a−bi is also a root.

By Vieta’s formula (or the usual expansion), we have

(x− z0)(x− z∗0) = x2 − (z0 + z∗0)+ z0z∗0 = x2 −2ax+a2 +b2 ∈ R [x] .

It can be shown, using Zorn’s lemma (equivalent to axiom of choice), that the algebraic closure of

a field F exists. In other words, given f (x) ∈ F [x], we may regard it as a polynomial in K [x]. Since

K is algebraically closed, then f (x) splits completely over K. In fact, this yields another proof of

Kronecker’s theorem (Theorem 3.2)!

When α ∈ L is algebraic over F , there many be many non-constant polynomials in F [x] with α

as a root. One of these polynomials is especially nice, and it is known as the minimal polynomial.

Definition 3.7 (minimal polynomial). Let α ∈ L be algebraic over F . Then, define the minimal

polynomial to be the unique, non-constant monic polynomial p ∈ F [x] with the following two

properties:

(i) α is a root of p, i.e. p(α) = 0

(ii) if f ∈ F [x] is any polynomial with α as a root, then f is a multiple of p

Besides the characterisation given in Definition 3.7, there are other ways to think about the minimal

polynomial. For example,

f = p if and only if f is a polynomial of minimal degree satisfying f (α) = 0

if and only if f is irreducible over F and f (α) = 0

Example 3.11. The minimal polynomial of
√

2 over Q is x2 −2. This follows from the irrationality

of
√

2, which implies that
√

2 cannot be the root of a polynomial of degree 1 in Q [x].

Example 3.12. Recall Example 3.7, where we mentioned that

√
2+

√
3 is a root of x4 −10x2 +1.

Is this the minimal polynomial? Well, one way to check is to verify whether x4−10x2+1 is irreducible

over Q. The easiest way to check for irreducibility is by computer (a manual check using Eisenstein’s

criterion fails here).
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Example 3.13 (cyclotomic polynomial). The minimal polynomial of ζn = e2πi/n over Q is called

the nth cyclotomic polynomial and is denoted by Φn (x).

We next show how to describe some interesting subrings and subfields of a given extension F ⊆ L.

Given α1, . . . ,αn ∈ L, we define

F [α1, . . . ,αn] = {h(α1, . . . ,αn) : h ∈ F [x1, . . . ,xn]} .

So, F [α1, . . . ,αn] consists of all polynomial expressions in L that can be formed using α1, . . . ,αn with

coefficients in F . Then, let

F (α1, . . . ,αn) =

{
α

β
: α,β ∈ F [α1, . . . ,αn] ,β ̸= 0

}
.

So, F (α1, . . . ,αn) is the set of all rational expressions in the αi with coefficients in F . We can

characterise F (α1, . . . ,αn) as follows:

Lemma 3.1. F (α1, . . . ,αn) is the smallest subfield of the field L containing F and α1, . . . ,αn.

Since F (α1, . . . ,αn) is a subfield of L containing F , we obtaining the following:

F ⊆ F (α1, . . . ,αn)⊆ L.

So, F (α1, . . . ,αn) is obtained from F by adjoining α1, . . . ,αn ∈ L. We can use this to construct new

fields. Moreover, Lemma 3.1 implies that we can adjoin elements to a field in stages. To be precise,

we have the following corollary:

Corollary 3.1. If F ⊆ L and α1, . . . ,αn ∈ L, then

F (α1, . . . ,αn) = F (α1, . . . ,αr)(αr+1, . . . ,αn) for all 1 ≤ r ≤ n−1.

Example 3.14. Consider the polynomial x4 −2 ∈Q [x]. Over C, this polynomial factors as

x4 −2 =
(

x− 4
√

2
)(

x+ 4
√

2
)(

x− i 4
√

2
)(

x+ i 4
√

2
)
.

since the roots of x4 −2 are ± 4
√

2,±i 4
√

2. As such,

Q
(

4
√

2,− 4
√

2, i 4
√

2,−i 4
√

2
)

is the smallest field over which x4 −2 splits completely.

This is in fact an example of a splitting field (will learn this in Definition 4.1). In fact, we have too

many elements in our new field, and it turns out we can describe this field more compactly by only

adjoining 2 elements from Q, i.e.

Q
(

4
√

2,− 4
√

2, i 4
√

2,−i 4
√

2
)
=Q

(
i, 4
√

2
)
.

To see why, let

K =Q
(

4
√

2,− 4
√

2, i 4
√

2,−i 4
√

2
)

and L =Q
(

i, 4
√

2
)
.
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We need to prove K ⊆ L and L ⊆ K. The first inclusion follows since Q ⊆ L is a field extension and

± 4
√

2,±i 4
√

2 ∈ L. Next, we prove the other inclusion L ⊆ K. This is obvious — note that i ∈ L, but i

can also be written in the following manner:

i =
i 4
√

2
4
√

2
which is the quotient of two elements from K.

In fact, field operations permit us to do this. By the closure property, i ∈ K as well. However, we

still need to ascertain that K contains Q and 4
√

2. K containing Q is obvious since Q ⊆ K is a field

extension; showing that K contains 4
√

2 is very similar to showing that K contains i. It follows that

L ⊆ K, so K = L.

We see how Corollary 3.1 is useful, i.e. adjoining elements to some field in stages.

Example 3.15. By Corollary 3.1, we have

Q
(√

2,
√

3
)
=Q

(√
2
)(√

3
)
.

As such, we have the following chain of inclusions:

Q⊆Q
(√

2
)
⊆Q

(√
2
)(√

3
)
=Q

(√
2,
√

3
)

which shows that we get Q
(√

2,
√

3
)

by first adjoining
√

2 to Q, then adjoining
√

3 to Q
(√

2
)

.

Lemma 3.2. Assume that F ⊆ L is a field extension, and let α ∈ L be algebraic over F with

minimal polynomial p ∈ F [x]. Then, there exists a unique ring isomorphism

F [α]∼= F [x]/(p) that is the identity on F

and maps α to the coset x+(p).

Proposition 3.1. Suppose F ⊆ L is a field extension and let α ∈ L. Then,

α is algebraic over F if and ly if F [α] = F (α) .

Proposition 3.2. Let F ⊆ L be a field extension and let α1, . . . ,αn ∈ L be algebraic over F .

Then,

F [α1, . . . ,αn] = F (α1, . . . ,αn) .

Example 3.16. Consider Q
(√

2,
√

3
)

. By Proposition 3.2, this field is equal to Q
[√

2,
√

3
]
, i.e.

every element of Q
(√

2,
√

3
)

is a polynomial in
√

2,
√

3 with rational coefficients.

Since (√
2
)2n

= 2n and
(√

2
)2n+1

= 2n
√

2 and(√
3
)2n

= 3n and
(√

3
)2n+1

= 3n
√

3
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then

Q
(√

2,
√

3
)
=
{

a+b
√

2+ c
√

3+d
√

6 : a,b,c,d ∈Q
}
.

In fact, this representation is unique. This will be formally covered once we introduce Definition 3.10

on the degree of a field extension. Just to jump the gun, the uniqueness property comes from the fact

that {
1,
√

2,
√

3,
√

6
}

forms a basis for Q
(√

2,
√

3
)

over Q

so any element of the field can be uniquely expressed as a+b
√

2+ c
√

3+d
√

6.

Definition 3.8 (number field). A field of the form

Q(α1, . . . ,αn) where α1, . . . ,αn are algebraic over Q

is called a number field.

Number fields are not explicitly covered in this course. Although we will encounter them in

MA5202, it turns out that some of the fields that we have encountered so far are number fields, i.e.

Q
(

i, 4
√

2
)

and Q
(√

2,
√

3
)

. I recommend Daniel Marcus’ book on ‘Number Fields’ for more insight

into this.

3.2. The Fundamental Theorem of Algebra

Theorem 3.3. The following are equivalent:

(i) Every non-constant f (x) ∈ C [x] has at least one root in C
(ii) Every non-constant f (x) ∈ C [x] splits completely over C

(iii) Every non-constant f (x) ∈ R [x] has at least one root in C

Theorem 3.4. Every f (x) ∈ R [x] of odd degree has at least one root in R.

Lemma 3.3. Every quadratic polynomial in C [x] splits over C.

Theorem 3.5 (fundamental theorem of algebra). Every non-constant f (x) ∈ C [x] splits

completely over C.

There are numerous proofs of the fundamental theorem of algebra. For example, Liouville’s

theorem in Complex Analysis provides a concise proof. The proof provided in Cox’s book hinges

on the first three results mentioned in this section. In particular, it is worth mentioning that the proof

of Theorem 3.4 involves the intermediate value theorem (accompanied with the triangle inequality).

Since the IVT depends on the completeness of R, one can argue that the fundamental theorem of

algebra is really a theorem in Real Analysis.
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Example 3.17 (Trinity College Dublin Michaelmas 2013). Use the fundamental theorem of algebra

to show that a non-constant polynomial with real coefficients is irreducible over R if and only if it is

either a polynomial of the form ax+b with a ̸= 0 or a quadratic polynomial of the form ax2 +bx+ c

with a ̸= 0 and b2 < 4ac.

Solution. The backward direction is obvious — f we have a linear polynomial ax+b with a ̸= 0, then

its factors are of degree zero and one so it is already irreducible. If the polynomial is quadratic and we

assume that its discriminant ∆ < 0, then the equation ax2 + bx+ c = 0 has no roots in R and hence,

irreducible over R.

For the forward direction, we now assume that p(x) is a non-constant polynomial with real coefficients

but irreducible over R. As a corollary of the fundamental theorem of algebra, p(x) has at least one

root in C. Call this root α .

Note that R ⊆ C. If α ∈ R, then x−α is a factor of p(x) = 0 in the polynomial ring R[x], where

we define R[x] to be the set of polynomials with real coefficients. Hence, p(x) = a(x−α), where

a is the leading coefficient of p(x). Setting b = −aα and then, we are done for the case of a linear

polynomial. If α contains an imaginary part, then α ∈ C and also, α∗ ∈ C. If we define α = p+ qi

for p,q ∈ R, note that

(x−α)(x−α
∗) = x2 − (α +α

∗)x+αα
∗ = x2 +2px+ p2 +q2,

which is a quadratic polynomial in R[x]. However, p(x) is irreducible over R, which implies that

a(x2+2px+ p2+q2) = 0 has no roots in R. Setting a,b,c where appropriate, the other result follows.

□

3.3. Irreducible Polynomials

Since minimal polynomials are irreducible, it hints that irreducibility plays an important role in

Field Theory. However, given an arbitrary polynomial f ∈ F [x], it may not be obvious that f is

irreducible. We shall provide some methods to determine whether a polynomial is irreducible, which

are namely

corollary of Gauss’ lemma and Eisenstein’s criterion and mod p irreducibility test.

As a consequence of Gauss’ lemma (MA3201), we have the following corollary:

Corollary 3.2. Let f ∈ Z [x] be of degree > 0 and is reducible over Q. Then,

there exist g,h ∈ Z [x] where deg(g) ,deg(h)< deg( f ) such that f = gh.
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Proof. Suppose f is reducible in Q [x], then f = g1h1, where g1,h1 ∈ Q [x] have degrees < deg( f ).

By Gauss’ lemma,

there exists δ ∈ Q such that g = δg1 and h = δ
−1h1 have integer coefficients.

Then, f = gh is the desired factorisation.

Theorem 3.6. Let n = deg( f ) > 0. First, note that if f (i) = 0 for some 0 ≤ i ≤ n− 1, then

x− i is a factor of f and we can quit. Hence, when performing the algorithm, we may assume

that f (0) , . . . , f (n−1) are nonzero. Then create a set of polynomials as follows:

1. Fix an integer 0 < d < n.

2. Fix divisors a0, . . . ,ad ∈ Z of f (0), . . . , f (d) ∈ Z.

3. Use Lagrange interpolation to construct a polynomial g ∈ Q[x] of degree ≤ d such that

g(i) = ai for i = 0, . . . ,d.

4. Accept g if it has degree d and integer coefficients; reject it otherwise.

Doing this for all 0 < d < n and all divisors a0 | f (0), . . . ,ad | f (d) gives a set of polynomials

g ∈ Z[x]. Then, the set of polynomials g ∈ Z [x] is finite, and

f is irreducible over Q if and only if it is not divisible by any of the polynomials in this set.

Theorem 3.7 (Eisenstein’s criterion). Let

f (x) = a0 +a1x+ . . .+an−1xn−1 +anxn ∈ Z[x].

Suppose there exists a prime p such that the following occur:

(i) p | ai for all 0 ≤ i ≤ n−1

(ii) p does not divide an

(iii) p2 does not divide a0

Then, f (x) is irreducible over Q.

Proof. Suppose on the contrary that f (x) is reducible over Q. Then,

there exist g,h ∈ Z [x] sucht that f = gh and deg(g)≥ 1 and 1 ≤ deg(h)< n.

We can set

g(x) = b0 + . . .+brxr and h(x) = c0 + . . .+ csxs,

so this implies that r ≥ 1 and 1 ≤ s < n. Since p | a0 but p2 does not divide a0 and a0 = b0c0, then by

Euclid’s lemma, p | b0 or p | c0. Suppose p | b0 but p does not divide c0. We note that an = brcs. As

p does not divide an then p does not divide brcs.

So, p does not divide br. As such, there exists a least t ∈ Z such that p does not divide bt .
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Since

a0 = b0c0

a1 = b0c1 +b1c0

a2 = b0c2 +b1c1 +b2c0

we can infer that

at = b0ct + . . .+bt−1c1 +btc0.

As p | at , by the choice of t, b0ct ,b1ct−1, . . . ,bt−1c1 are all divisible by p. This forces btc0 to be a

multiple of p as well. However, this is a contradiction because p neither divides bt nor c0.

Example 3.18. Let

f (x) = xn + px+ p where n ≥ 2 and p is prime.

By Eisenstein’s criterion for the prime p, it immediately implies that f is irreducible over Q regardless

of our choice of n.

Example 3.19 (Trinity College Dublin Michaelmas 2013). Using Eisenstein’s criterion, or otherwise,

prove that
√

3 is irrational, and is not of the form b
√

2 for any b ∈Q. Hence or otherwise, show that

there cannot exist rational numbers a and b such that
√

3 = a+b
√

2 and thus prove that
√

3 ̸∈Q(
√

2).

Solution. We first prove that
√

3 is irrational. Consider the polynomial f (x) = x2 − 3, for which its

roots are ±
√

3. It suffices to prove that the equation f (x) = 0 is irreducible over Q as seen from the

fact that f (x) cannot be split into linear factors. We use Eisenstein’s criterion. Set p = 3. Then, 3 | 3,

3 | 0 but 3 does not divide 1. Also, 32 = 9 does not divide −3. It follows that
√

3 is irrational.

For the next part, consider the polynomial 2x2−3 and again, it is easy to show by Eisenstein’s criterion

that it is irreducible over Q.

For the last part, suppose on the contrary that there exist a,b ∈Q such that
√

3 = a+b
√

2. So,

a2 +2b2 +2ab
√

2 = 3 which implies 2ab
√

2 = 3−a2 −2b2

The LHS is irrational but the RHS is rational, which is a contradiction! Now, we prove that
√

3 ̸∈
Q(

√
2). Recall that the quadratic field Q(

√
2) is the set of numbers of the form a+ b

√
2, where

a,b ∈Q. Since we showed that there does not exist a,b ∈Q such that
√

3 = a+b
√

2, then the result

follows. □

Definition 3.9 (cyclotomic polynomial). Let p be a prime. We define the pth cyclotomic

polynomial, Φp(x), to be

Φp(x) =
xp −1
x−1

=
p−1

∑
i=0

xi.
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In Definition 3.9, we mentioned that the index is some prime p. In general, this can be replaced

with some arbitrary positive integer n. As a corollary of Eisenstein’s criterion (Theorem 3.7), we have

the following result:

Corollary 3.3. For any prime p, Φp(x) is irreducible over Q.

Before we prove Corollary 3.3, we give a remark that Eisenstein’s criterion can be used to determine

the minimal polynomial of the pth root of unity ζp = e2πi/p, where p is prime. Note that

xp −1 = (x−1)
(
xp−1 + . . .+ x+1

)
so ζp is a root of Φp.

Proving Corollary 3.3 will in turn show that the minimal polynomial of ζp over Q is xp−1+ . . .+x+1.

We now prove Corollary 3.3.

Proof. The trick is to consider Φp(x+1) instead. Let this be denoted by f (x). Then,

f (x) = Φp(x+1) =
(x+1)p −1

x
= xp−1 +

(
p
1

)
xp−2 +

(
p
2

)
xp−3 + . . .+

(
p

p−1

)
.

It is a well-known result that
(p

k

)
is divisible by p for 1 ≤ k ≤ p−1. This is because(

p
k

)
=

p(p−1) . . .(p− k+1)
k!

and since

k! = k(k−1)(k−2) · . . . ·3 ·2 ·1 with none of these products dividing p,

the result follows. So for f , every coefficient except that of xp−1 is divisible by p and the constant

term
( p

p−1

)
= p is not divisible by p2. By Eisenstein’s criterion, f is irreducible over Q, so Φp is

irreducible over Q.

Our last irreducibility criterion is known as the mod p irreducibility test.

Theorem 3.8 (mod p irreducibility test). Let p be a prime and suppose f (x) ∈ Z[x] with

deg( f ) ≥ 1. Let f (x) ∈ Zp[x] be obtained from f (x) by reducing all the coefficients of f (x)

mod p. If

f is irreducible over Zp and deg( f ) = deg
(

f
)

then f is irreducible over Q.

Example 3.20. Let f (x) = 21x3 −3x2 +2x+9. Then, over Z2, we have f (x) = x3 + x2 +1. We see

that f (0) = 1 and f (1) = 1, so f (x) is irreducible over Z2, which implies that f (x) is irreducible over

Q.

Proposition 3.3. Let p be a prime. Then,

f = xp −a ∈ F [x] is irreducible over F if and only if f has no roots in F.
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Example 3.21. Let F be a subfield of R and let p be an odd prime. Given a ∈ F , define p
√

a to be

the real pth root of a. Furthermore, since p is odd, then p
√

a is the only real pth root of a. To see why,

suppose there exists another real pth root of a. Then, consider the complex number

e2kπi/p · p
√

a where p is prime and 0 ≤ k ≤ p.

For this root to lie on the real axis, we must have 2kπ/p = π , so 2k = p. However, p is odd, so it

cannot take the form 2k for any k ∈ Z.

Returning to the question on irreducibility, by Proposition 3.3,

xp −a is irreducible over F if and only if p
√

a ̸∈ F.

Example 3.22 (Cox p. 88 Question 9). Let k be a field, and let

F = k (t) be the field of rational functions in t with coefficients in k.

Then consider f = xp − t ∈ F [x], where p is prime. Prove that f has no roots in F , which in turn by

Proposition 3.3, would imply that f is irreducible over F .

Solution. Suppose on the contrary that f is reducible over F . Then, r ∈ F = k (t) is a root of f (x). As

such, rp = t. This implies that

r =
g(t)
h(t)

where g(t) ,h(t) ∈ k [t] and h(t) ̸= 0.

Moreover, we can assume that gcd(g,h) = 1. Hence, (g(t))p = t (h(t))p. This implies that (h(t))p |
(g(t))p, so h(t) | t (t) in k [t] since k [t] is a UFD (recall from MA3201 that if F is a field then F [x] is

a UFD).

Since gcd(g,h) = 1, then h(t) | 1, meaning that h is a constant polynomial. As such, let h(t) = c,

where c is non-zero. Then,

r =
g(t)

c
so rp =

(g(t))p

cp .

Since rp = t, then (g(t))p = cpt. As such, g(t) | t, so there exists g1 (t) ∈ k [t] such that g(t) = tg1 (t).

Substituting this back, we obtain t p (g1 (t))
p = cpt. Since t ̸= 0 in k (t), cancelling t on both sides

yields

t p−1 (g1 (t))
p = cp.

Since the LHS is divisible by t p−1 whereas the RHS is a non-zero constant cp, this yields a

contradiction unless t = 0, which cannot occur in k (t). □
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3.4. The Degree of an Extension

Suppose F and L are two fields, with L being an extension of F . Recall that this is the same as

saying that F is a subfield of L. So far, there is one bit of structure that has not been utilised. We also

recall that any field is an Abelian group under addition — in particular, L has this property. Moreover,

since F ⊆ L, the ability to multiply elements of L implies that we can

multiply elements of F times elements of L.

This yields a scalar multiplication property, for which one can check using tools from MA2101 that L

becomes a vector space over F . Analogous to the concept of rank in MA2001/MA2101, we have the

following definition regarding the degree of a field extension.

Definition 3.10 (degree of extension). Let F ⊆ L be a field extension. Then,

L is a finite extension of F if L is a finite-dimensional vector space over F.

The degree of L over F , denoted by [L : F ], is defined as follows:

[L : F ] =

dimF L if L is a finite extension of F ;

∞ otherwise.

Example 3.23. For R⊆ C, the usual way of writing complex numbers as a+bi shows that 1 and i

forms a basis of C as a vector space over R. In other words,

{1, i} is an R-basis for C.

So, [C : R] = 2. In fact, an obvious reason why the degree of the extension is 2 is attributed to

Proposition 3.4, but we shall briefly state why. It is simply because

C= R(i) and the minimal polynomial of i over R is x2 +1.

Example 3.24. [R : Q] = ∞ since any finite-dimensional vector space over Q is countable but any

over R is uncountable.

We have an obvious characterisation of extensions of degree 1.

Lemma 3.4. An extension F ⊆ L has

degree [L : F ] = 1 if and only if F = L.

Proof. The reverse direction is obvious. To prove the forward direction, say [L : F ] = 1, then any

non-zero element of L, say 1 ∈ L, is a basis. Thus, L = {a· : a ∈ F}= F .

In general, we can compute the degree of an extension F ⊆ F (α) as follows:
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Proposition 3.4 (computing degree of extension). Suppose F ⊆ L is an extension and α ∈ L.

Then, the following hold:

(i) α is algebraic over F if and only if [F (α) : F ]< ∞

(ii) If α is algebraic over F and n is the degree of the minimal polynomial of α over F , then{
1,α, . . . ,αn−1} forms a basis of F (α) over F and consequently [F (α) : F ] = n.

As such, Proposition 3.4 implies that when the minimal polynomial of α has degree n, then every

β ∈ F (α) can be uniquely written as

β = a0 +a1α + . . .+an−1α
n−1 where a0, . . . ,an−1 ∈ F.

Example 3.25. Consider the extension Q⊆Q
(√

2
)

. Since the minimal polynomial of
√

2 is x2−2,

by Proposition 3.4, we have[
Q
(√

2
)

: Q
]
= 2 and Q

(√
2
)
=
{

a+b
√

2 : a,b ∈Q
}
.

In fact, this representation of Q
(√

2
)

is unique.

Example 3.26. Recall Example 3.7, where we mentioned that the minimal polynomial of
√

2+
√

3

over Q is x4 −10x2 +1. So,
[
Q
(√

2+
√

3
)

: Q
]
= 4, and every β ∈Q

(√
2+

√
3
)

can be uniquely

written as

β = a+b
(√

2+
√

3
)
+ c
(√

2+
√

3
)2

+d
(√

2+
√

3
)3

where a,b,c,d ∈Q.

We will see in Example 3.28 that there is a neat derivation that
[
Q
(√

2+
√

3
)

: Q
]
= 4 using the

tower theorem (Theorem 3.9). Just to jump the gun,

the fields Q
(√

2+
√

3
)

and Q
(√

2,
√

3
)

are equivalent.

This is not obvious, but we will establish it in Example 3.28. Since

Q
(√

2,
√

3
)
=Q

(√
2
)(√

3
)
,

we can use the tower theorem (Theorem 3.9) to deduce that the degree of the field extension Q ⊆
Q
(√

2+
√

3
)

is 4. More to come in due course.

Example 3.27. Let F (x) be the field of rational functions in the variable x with coefficients in F .

Then, [F (x) : F ] = ∞ since x is not algebraic over F .

As mentioned earlier, we can determine how the degree behaves when we have successive

extensions F ⊆ K ⊆ L using the tower theorem (Theorem 3.9).

Theorem 3.9 (tower theorem). Suppose we have fields F ⊆ K ⊆ L. Then, the following hold:

(a) If [K : F ] = ∞ or [L : K] = ∞, then [L : F ] = ∞
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(b) If [K : F ]< ∞ and [L : K]< ∞, then [L : F ] = [L : K] [K : F ].

We will only prove (b).

Proof. Let X = {x1, . . . ,xn} be a basis for L over K and Y = {y1, . . . ,ym} be a basis for K over F .

Define Y X to be the following set:

Y X =
{

y jxi : 1 ≤ j ≤ m,1 ≤ i ≤ n
}

It suffices to show that Y X is a basis for L over F .

Let a ∈ L. Then, there exist b1, . . . ,bn ∈ K such that

a =
n

∑
i=1

bixi.

Also, for each 1 ≤ i ≤ n, there exist ci1, . . . ,cim ∈ F such that

bi =
m

∑
j=1

ci jy j.

As such,

a =
n

∑
i=1

(
m

∑
j=1

ci jy j

)
xi =

n

∑
i=1

m

∑
j=1

ci jy jxi,

which proves that Y X spans L over F .

Now, suppose there are elements ci j ∈ F such that

n

∑
i=1

m

∑
j=1

ci jy jxi = 0.

Since
m

∑
j=1

ci jy j ∈ K

and X is a basis for L over K, it implies that for all 1 ≤ i ≤ n,

m

∑
j=1

ci jy j = 0.

However, each ci j ∈ F and Y is a basis for E over F , so each ci j = 0. This shows that Y X is linearly

independent over F .

Corollary 3.4 (Cox p. 94 Question 7). Suppose we have extensions L0 ⊂ L1 ⊂ ·· · ⊂ Lm. Then,

the following hold:

(a) If [Li : Li−1] = ∞ for some 1 ≤ i ≤ m, then [Lm : L0] = ∞
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(b) If [Li : Li−1]< ∞ for all 1 ≤ i ≤ m, then

[Lm : L0] = [Lm : Lm−1] [Lm−1 : Lm−2] · · · [L2 : L1] [L1 : L0]

Proof. Use induction.

Example 3.28. We will analyse Q⊆Q
(√

2,
√

3
)

using

Q⊆Q
(√

2
)
⊆Q

(√
2,
√

3
)
.

Recall that
{

1,
√

2
}

is a basis for Q
(√

2
)

over Q since x2 −2 is the minimal polynomial of
√

2 over

Q. Furthermore, one can show that x2 −3 is the minimal polynomial of
√

3 over Q
(√

2
)

(remember

to justify this), so that
{

1,
√

3
)

forms a basis for Q
(√

2,
√

3
)

over Q
(√

2
)

.

By the tower theorem (Theorem 3.9), we have[
Q
(√

2,
√

3
)

: Q
]
=
[
Q
(√

2,
√

3
)

: Q
(√

2
)][

Q
(√

2
)

: Q
]
= 2 ·2 = 4.

As such, the products of the bases 1,
√

2 and 1,
√

3, namely 1,
√

2,
√

3,
√

2
√

3 =
√

6 give a basis of

Q
(√

2,
√

3
)

over Q.

Recall that 1,
√

2,
√

3,
√

6 span Q
(√

2,
√

3
)

over Q. We now see that these elements form a basis

that arises naturally from the tower theorem. We note that

Q⊆Q
(√

2+
√

3
)
⊆Q

(√
2,
√

3
)

where the first inclusion is obvious but the second is not. We shall justify that

Q
(√

2+
√

3
)
⊆Q

(√
2,
√

3
)

is a field extension.

Note that
√

2+
√

3 ∈Q
(√

2+
√

3
)

so
1√

2+
√

3
=
√

3−
√

2 ∈Q
(√

2+
√

3
)

Here, we merely applied a field axiom. In particular, this shows that(√
2+

√
3
)
+
(√

3−
√

2
)
= 2

√
3 which is an element of Q

(√
2,
√

3
)

!

Of course, it follows that
√

3 and
√

2 are elements of Q
(√

2+
√

3
)

, so they are also elements

of Q
(√

2,
√

3
)

. We now give a different proof using the tower theorem. Earlier, we showed that[
Q
(√

2,
√

3
)

: Q
]
= 4, so by the tower theorem (Theorem 3.9), we have[

Q
(√

2,
√

3
)

: Q
]
=
[
Q
(√

2,
√

3
)

: Q
(√

2+
√

3
)][

Q
(√

2+
√

3
)

: Q
]

which implies[
Q
(√

2,
√

3
)

: Q
(√

2+
√

3
)]

= 1 and consequently Q
(√

2+
√

3
)
=Q

(√
2,
√

3
)
.
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Example 3.29. Let ω = e2πi/3 be a third root of unity and L =Q
(

ω, 3
√

2
)

. We shall compute [L : Q]

using the extension fields

Q⊆Q
(

3
√

2
)
⊆Q

(
ω,

3
√

2
)
= L.

To determine
[
Q
(

3
√

2
)

: Q
]
, we first observe that x3−2 is irreducible over Q. This is an obvious fact

as we can solve for the roots easily but we realise that one root is irrational and the other two are living

in the complex world. Actually, one can also prove this result using Eisenstein’s criterion (Theorem

3.7) with p = 2. Hence,
[
Q
(

3
√

2
)

: Q
]
= 3.

We then compute
[
L : Q

(
3
√

2
)]

. By a formula learnt in O-Level or by recognising the presence of a

geometric series, we see that

x3 −1 = (x−1)
(
x2 + x+1

)
.

Recall that x2+x+1= 0 has roots ω and ω2, neither of which is real. As Q
(

3
√

2
)
⊆R, then x2+x+1

has no root in this field, so that x2 + x+ 1 is the minimal polynomial of ω over Q
(

3
√

2
)

. As such,[
L : Q

(
3
√

2
)]

= 2 since L =Q
(

3
√

2
)
(ω).

By the tower theorem (Theorem 3.9), we can easily conclude that

[L : Q] =
[
L : Q

(
3
√

2
)][

Q
(

3
√

2
)

: Q
]
= 2 ·3 = 6.

Example 3.30 (Cox p. 94 Question 2). Compute the degrees of the following extensions:

(a) Q⊆Q
(

i, 4
√

2
)

(b) Q⊆Q
(√

3, 3
√

2
)

(c) Q⊆Q
(√

2+
√

2
)

(d) Q
(

i,
√

2+
√

2
)

Solution.

(a) By the tower theorem,[
Q
(

i, 4
√

2
)

: Q
]
=
[
Q
(

i, 4
√

2
)

: Q(i)
]
· [Q(i) : Q] = 4 ·2 = 8.

(b) Again, by the tower theorem, the degree of the extension is 2 ·3 = 6.

(c) Consider (
x−
√

2+
√

2
)(

x+
√

2+
√

2
)
= x2 −

(
2+

√
2
)
.

As such,[
Q
(√

2+
√

2
)

: Q
]
=

[
Q
(√

2+
√

2
)

: Q
(√

2
)]

·
[
Q
(√

2
)

: Q
]
= 2 ·2 = 4.
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Alternatively, we can continue from where we left off — set x2−
(

2+
√

2
)
= 0, so x2−2=

√
2,

which implies x4 −4x2 +2 = 0. This is the minimal polynomial of
√

2+
√

2 over Q, and as it

is of degree 4, the required degree of the field extension is 4.

(d) By the tower theorem, applying (c) shows that the degree of the extension is 2 ·4 = 8.

On page 94 of Cox’s textbook, the reader is asked to find a basis over Q using the method of Example

3.28 for each of the extensions in Example 3.30. This is rather straightforward and we omit the details.

Well, as an example for the extension Q⊆Q
(

4
√

2
)

in (a), the desired basis is{
1,α,α2,α3, i, iα, iα2, iα3} where α =

4
√

2.

Example 3.31 (Cox p. 94 Question 4). Suppose

F ⊆ L is a finite extension with [L : F ] prime.

(a) Show that the only subfields of L containing F are F and L.

(b) Show that L = F (α) for any α ∈ L\F .

Solution.

(a) By definition, F and L are subfields of L. Since F ⊆ L is a finite extension with the degree of

extension being some prime p, we can write

p = [L : F (α)] [F (α) : F ] by the tower theorem (Theorem 3.9).

Here, F ⊆ F (α) is a finite extension. So, we can have either [F (α) : F ] = 1 or p. If the degree

of this extension is 1, then F = F (α) by Lemma 3.4; if the degree of this extension is p, then

L = F (α). In either case, we see that the only subfields are F and L.

(b) Since α ∈ L, then F ⊆ F (α) ⊆ L. Since α ̸∈ F , by (a), F (α) ̸= F so it follows that L =

F (α).

Example 3.32 (Cox p. 94 Question 5). Consider the extension Q ⊆ L = Q
(

4
√

2, 3
√

3
)

. We will

compute [L : Q].

(a) Show that x4 −2 and x3 −3 are irreducible over Q.

(b) Use Q⊆Q( 4
√

2)⊆ L to show that 4 | [L : Q] and [L : Q]≤ 12.

(c) Use Q⊆Q( 3
√

3)⊆ L to show that [L : Q] is also divisible by 3.

(d) Explain why parts (b) and (b) imply that [L : Q] = 12. This works because 3 and 4 are relatively

prime. Do you see why?

Solution.

(a) Use Eisenstein’s criterion for p = 2 and p = 3 respectively.

(b) By the tower theorem,

[L : Q] =
[
L : Q

(
4
√

2
)][

Q
(

4
√

2
)

: Q
]
=
[
L : Q

(
4
√

2
)]

·4.

The first result follows. For the second result, the minimal polynomial of 3
√

3 over Q
(

4
√

2
)

divides x3 − 3, so it implies
[
L : Q

(
4
√

2
)]

≤ 3. Putting this into our equation which made use

of the tower theorem yields the desired result.
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(c) Similar as (b) — use the tower theorem.

(d) From (b) and (c), we have 3,4 | [L : Q] so 12 | [L : Q]. Since [L : Q] ≤ 12 by (b), the result

follows.

3.5. Algebraic Extensions

Definition 3.11 (algebraic extension). A field extension F ⊆ L is

algebraic if every element of L is algebraic over F.

Lemma 3.5. Let F ⊆ L be a finite extension. Then, the following hold:

(i) F ⊆ L is algebraic

(ii) if α ∈ L, then

the degree of the minimal polynomial of α over F divides [L : F ] .

Proof. Let α ∈ L, then we obtain the field extension F ⊆ F (α)⊆ L. By the tower theorem, we have

[L : F ] = [L : F (α)] [F (α) : F ] .

Since F ⊆ L is a finite extension, then [L : F ] is finite, so [F (α) : F ] is finite and it divides [L : F ]. The

result follows.

Lemma 3.5 states that every finite extension is algebraic. However, the converse is generally not

true, i.e. not every algebraic extension is finite (Example 3.33).

Example 3.33 (Cox p. 98 Question 1). Here, we will show that there exists some algebraic extension

which is finite. By definition, the field of algebraic integers A (Cox uses Q) is algebraic over Q. We

will show that [A : Q] = ∞.

To see why, we first establish that for any integer n ≥ 2, A has a subfield L such that [L : Q] = n.

Recall Example 3.18, where we used Eisenstein’s criterion to prove that

the polynomial f (x) = xn + px+ p where n ≥ 2 and p is prime,

is irreducible over Q regardless of the choice of n. As such, if α is a root of f (x) in A, then L =Q(α)

is a subfield of A. As f is the minimal polynomial of α over Q and deg( f ) = n, it follows that

[L : Q] = n. By the tower theorem, we have

[A : Q] = [A : L] [L : Q] so [A : Q] = [A : L] ·n.

Since n can be made arbitrarily large, it follows that [A : Q] = ∞.

Theorem 3.10. A is algebraically closed.

We then explore the structure of finite extensions.
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Theorem 3.11. Let F ⊆ L be a field extension. Then,

[L : F ]< ∞ if and only if there exist α1, . . . ,αm ∈ L such that

each αi is algebraic over F and L = F (α1, . . . ,αm)

Proposition 3.5 (sum and product of algebraic elements is algebraic). Let F ⊆ L be a field

extension. If

α,β ∈ L are algebraic over F then so are α +β and αβ .

Proof. By Theorem 3.11, F ⊆ F (α,β ) is a finite extension. Recall from Lemma 3.5 that every

finite extension is algebraic. As such, every element of F (α,β ) is algebraic over F . By field closure

properties, we have α +β ,αβ ∈ F (α,β ), and the result follows.

Corollary 3.5. Given any field extension F ⊆ L, the subset

M = {α ∈ L : α is algebraic over F} is a subfield of L containing F.

Proof. We have

F ⊆ M since a ∈ F is a root of x−a ∈ F [x]

and M is closed under addition and multiplication by Proposition 3.5 since the sum and product

of algebraic elements over F are also algebraic over F . Since −1 ∈ F ⊆ M, then α ∈ M implies

−α =−1 ·α ∈M. Finally, if α ̸= 0∈M, then 1/α ∈M (since the reciprocal of any non-zero algebraic

element is also algebraic by Example 3.8). Hence, M is a subfield of L.

Example 3.34. A complex number z ∈ C is called an algebraic number if it is algebraic over Q. As

such, we obtain the field of algebraic numbers A, defined as follows:

A= {z ∈ C : z is an algebraic number} .

Theorem 3.12 (being algebraic is transitive). Let F ⊆ K ⊆ L. If α ∈ L is algebraic over K

and K is algebraic over F , then α is algebraic over F .

Example 3.35 (Cox p. 98 Question 5). In 1873 Hermite proved that

e is transcendental over Q (Hermite-Lindemann theorem),

and in 1882, Lindemann showed that

π is transcendental over Q (Lindemann-Weierstrass theorem).

It is unknown whether π + e and π − e are transcendental. Prove that at least one of these numbers is

transcendental over Q.
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Solution. Suppose on the contrary that neither π + e nor π − e is transcendental. Then, both of them

are algebraic, so their sum and difference are also algebraic by Proposition 3.5, i.e.

2π and 2e are algebraic.

It follows that π and e are algebraic over Q, which is a contradiction by the results of Hermite

and Lindemann (we can include Weierstrass as well). As such, at least one of π + e and π − e is

transcendental over Q. □

Corollary 3.6. If we have field extensions F ⊆ K ⊆ L, where L is algebraic over K and K is

algebraic over F , then L is algebraic over F .

Example 3.36. Consider the equation

x11 −
(√

2+
√

5
)

x5 +3 4
√

12x3 +(1+3i)x+ 5
√

17 = 0.

Note that the coefficients are algebraic over Q, so every complex solution of the equation is an

algebraic number by Theorem 3.12 (algebraic property is transitive).

Example 3.37 (Cox p. 98 Question 2). Let α ∈ C be a solution of

x11 −
(√

2+
√

5
)

x5 +3 4
√

12x3 +(1+3i)x+ 5
√

17 = 0.

We will show that the minimal polynomial of α over Q has degree at most 1760. Let

L =Q
(√

2,
√

5, 4
√

12, i, 5
√

17,α
)
.

(a) Show that [L : Q]≤ 1760.

(b) Use Lemma 3.5 to show that the minimal polynomial of α has degree at most 1760.

Solution.

(a) Since α satisfies a polynomial equation of degree 11, by the tower theorem, we have

[L : Q]≤ 2 ·2 ·4 ·2 ·5 ·11 = 1760.

(b) Since α ∈ L, by Lemma 3.5, the degree of the minimal polynomial of α over Q divides [L : Q] =

1760, so it follows that the degree of the minimal polynomial is at most 1760.

Example 3.38 (Trinity College Dublin Michaelmas 2013). Use the tower theorem to prove that the

set of all algebraic numbers is a subfield of C.

Solution. Note that z ∈ C is algebraic if and only if it is algebraic over Q. It is clear that for w,z ∈ C,

Q(z) ⊆ Q(z)(w) is a finite field extension. Recall the definition of such an example of a field

extension. On the left, for the field Q(z)(w), This can be thought of as the set of numbers of the

form a+bw, where a,b ∈Q(z).
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Note that Q(z,w) =Q(z)(w). Now, recall the tower theorem which states that

for field extensions E ⊆ F and F ⊆ G we have [G : E] = [G : F ] [F : E]

Also, recall that Q(z) ⊆ Q(z)(w) = Q(z,w) and note that Q ⊂ Q(z). By the tower theorem, Q ⊆
Q(z,w) is a finite field extension. All that is left is to verify that z + w, z − w, zw and zw−1 are

algebraic numbers in order to show that the set of all algebraic numbers Q(z,w) is a subfield of C.

This is obvious. □

In addition to the notion of an algebraic number in C, one can also define algebraic integers!

Definition 3.12 (algebraic integer). An algebraic integer is a complex number that is a root

of a monic polynomial with integer coefficients.

Example 3.39.
√

2 and ω =
(
−1+ i

√
3
)
/2 are algebraic integers since they are roots of x2 −2 and

x2 + x+1 respectively.

Algebraic integers play an important role in Algebraic Number Theory. For example, Euler proved

Fermat’s last theorem for n = 3 by writing x3 + y3 = z3 as

x3 = z3 − y3 = (z− y)(z−ωy)
(
z−ω

2y
)

and using unique factorisation in the ring of algebraic integers Z [ω]. The interested reader is

recommended to refer to Daniel Marcus’ book on ‘Number Fields’ or ‘ Algebraic Number Theory

and Fermat’s Last Theorem’ by David Tall and Ian Stewart.

Example 3.40 (Cox p. 98 Question 3). In Definition 3.12, we defined an algebraic integer to be a

complex number α ∈ C that is a root of a monic polynomial in Z [x].

(a) Prove that α ∈ C is an algebraic integer if and only if α is an algebraic number whose minimal

polynomial over Q has integer coefficients.

(b) Show that ω/2 is not an algebraic integer, where ω =
(
−1+ i

√
3
)
/2.

Solution.

(a) For the forward direction, suppose α ∈ C is an algebraic integer. Say the monic polynomial is

p, so p(α) = 0, where p ∈ Z [x] is monic. Write P =Q [x] as the minimal polynomial of α over

Q. Then, P | p in Q [x], i.e. there exists q ∈Q [x] such that p = Pq.

So, there exists δ ∈ A such that P̃ = δP, q̃ = δ−1q ∈ Z [x]. So, p = P̃q̃, where P̃, q̃ ∈ Z [x].

Since p is monic, then P̃, q̃ are also monic. It follows that P = P̃, with P ∈ Z [x].

The reverse direction is straightforward. If the minimal polynomial P of α over Q has integer

coefficients, then P is an example of a monic polynomial such that P(α)= 0, so α is an algebraic

integer.
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(b) We have

ω

2
=

1
2

e2πi/3

ω/2 is a root of z3−1/8 = 0, but this polynomial is not monic. As such, ω/2 is not an algebraic

integer.
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4. Normal and Separable Extensions

4.1. Splitting Fields

For any field F , we know that if f (x) ∈ F [x], then there exists a field extension L of F such that

f (x) splits completely. This motivates the definition of a splitting field (Definition 4.1).

Definition 4.1 (splitting field). Let f (x) ∈ F [x] with deg( f ) = n > 0. A field extension L of

F is a splitting field of f (x) over F if the following hold:

(i) f (x) = c(x−α1) . . .(x−αn) where c ∈ F and ai ∈ L for all 1 ≤ i ≤ n

(ii) L = F (α1, . . . ,αn)

Note that the field extension L in Definition 4.1 is the smallest extension over which a polynomial

splits completely. Recall that the existence of splitting fields follows due to Kronecker’s theorem

(Theorem 3.2), which mentions if f ∈ F [x] splits completely as f = c(x−α1) . . .(x−αn) in L [x],

then F (α1, . . . ,αn) is a splitting field of f over F .

We first give some examples of splitting fields.

Example 4.1. First, note that

Q
(√

2,
√

3
)
=Q

(
±
√

2,±
√

3
)
.

This field is a splitting field of
(
x2 −2

)(
x2 −3

)
over Q as this polynomial factorises as linear factors,

i.e. (
x2 −2

)(
x2 −3

)
=
(

x+
√

2
)(

x−
√

2
)(

x+
√

3
)(

x−
√

3
)

with the first two terms being obvious elements of Q
(√

2
)

and the other two being elements of

Q
(√

3
)
. By using the fact that Q

(√
2,
√

3
)
=Q

(√
2
)(√

3
)
.

Example 4.2. Recall that

Q
(

4
√

2,− 4
√

2,− 4
√

2,−i 4
√

2
)
=Q

(
i, 4
√

2
)
.

So, Q
(

i, 4
√

2
)

is a splitting field of x4 −2 over Q.

Example 4.3 (Cox p. 106 Question 1). Let ω = e2πi/3. Then, a splitting field of x3 − 2 over Q is

Q
(

ω, 3
√

2
)

. To see why, note that

the solutions to x3 −2 = 0 are x = 3
√

2, 3
√

2ω,
3
√

2ω
2.

As such,

x3 −2 =
(

x− 3
√

2
)(

x− 3
√

2ω

)(
x− 3

√
2ω

2
)
.

Each of the roots 3
√

2, 3
√

2ω, 3
√

2ω2 is contained in the field Q
(

ω, 3
√

2
)

. So, it follows that Q
(

ω, 3
√

2
)

is indeed a splitting field of x3 −2 over Q.
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We note that a splitting field of f ∈ F [x] depends on both the polynomial f and the field F . For

instance,

a splitting field of x2 +1 over Q is Q(i)

a splitting field of x2 +1 over R is C

a splitting field of x2 +1 over C is C

Well, to see why, consider the polynomial f (x) = x2 +1 ∈Q [x]. Since x2 +1 = (x+ i)(x− i), then f

splits over C, but a splitting field over Q is Q(i) = {a+bi : a,b ∈Q}.

Likewise, x2 −2 ∈Q [x] splits over R but a splitting field over Q is Q
(√

2
)
=
{

a+b
√

2 : a,b ∈Q
}

.

There is a useful analogy between the definition of a splitting field and the definition of an irreducible

polynomial. Just as it makes no sense to say that ‘ f (x) is irreducible’, it then makes no sense to say

‘L is a splitting field for f (x)’. In each case, the underlying field must be specified, i.e. one must say

‘ f (x) is irreducible over F’ and ‘L is a splitting field for f (x) over F’.

Since the roots of a non-constant polynomial f ∈ F [x] are algebraic over F , then by Theorem 3.11,

a splitting field of f over F is always a finite extension of F . In fact, the degree of this extension is

bounded by n! as shown in Theorem 4.1.

Theorem 4.1 (bounding degree of field extension). Le f ∈ F [x] be a polynomial of degree

n > 0, and let L be a splitting field of f over F . Then, [L : F ]≤ n!.

We will see a couple of examples of Theorem 4.1 having equality and inequality as shown in

Examples 4.4 and 4.5 respectively.

Example 4.4. Recall that

Q
(√

2,
√

3
)

is a splitting field of
(
x2 −2

)(
x2 −3

)
over Q

and the degree of this field extension is 4. The degree of the minimal polynomial obtained is 4 as well

but 4 < 4!.

Example 4.5. Recall that

Q
(

ω,
3
√

2
)

is a splitting field of x3 −2 over Q

and the degree of this field extension is 2 ·3 = 6 by the tower theorem (Theorem 3.9). Also, the degree

of the minimal polynomial obtained is 3. One checks that the formula in Theorem 4.1 holds as 6 = 3!.

We then discuss the uniqueness of splitting fields. We will see that they are unique up to

isomorphism. A given polynomial f ∈ F [x] will have many distinct splitting fields. For example,

Q
(√

2
)

and Q [t]/
(
t2 −2

)
are splitting fields of x2 −2 over Q.
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Although these fields are not the same, they are isomorphic. In fact, we can prove such a result for

all polynomials, so we shall establish a more general fact. Say we have an isomorphism of fields

ϕ : F1 ∼= F2 and let f1 ∈ F1 [x] be a polynomial of degree n > 0. Applying ϕ to the coefficients of f1

yields a polynomial f2 ∈ F2 [x].

Let Li be a splitting field of fi over Fi for i = 1,2. Then, this yields the following diagram:

L1 L2

F1 F2
⊆ ⊆

ϕ

ϕ

Although the splitting fields L1 and L2 might be constructed using different ways, they are always

isomorphic as shown in Theorem 4.2.

Theorem 4.2. Suppose f1 ∈ F1 [x] and there exists an isomorphism ϕ : F1 ∼= F2. Then,

there exists an isomorphism ϕ : L1 ∼= L2 such that ϕ = ϕ|F1.

When applied to the identity map 1F : F → F and f ∈ F [x], Theorem 4.2 yields the following

corollary on a uniqueness result for splitting fields.

Corollary 4.1. Suppose L1,L2 are splitting fields of f ∈ F [x]. Then,

there exists an isomorphism L1 ∼= L2 that is the identity on F.

As such, we are now in position to discuss the unique splitting field of f ∈ F [x], provided that we

remember that splitting fields are unique up to isomorphism.

Proposition 4.1. Let L be a splitting field of a polynomial in F [x], and suppose h ∈ F [x] is

irreducible and has roots α,β ∈ L. Then,

there exists a field isomorphism σ : L → L that is the identity on F and σ (α) = β .

Example 4.6. Again, recall that L =Q
(√

2
)

is the splitting field of x2−2 over Q. This polynomial

is irreducible over Q and has roots ±
√

2 ∈ L. By Proposition 4.1,

there exists an isomorphism σ : L → L such that σ

(√
2
)
=−

√
2.

Of course, the roles of
√

2 and −
√

2 can be swapped, i.e. we can also say that there exists an

isomorphism σ : L → L such that σ

(
−
√

2
)
=

√
2. We will see that using Proposition 4.1 is closely
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tied to the definition of a Galois group (Definition 5.1), i.e.

an isomorphism σ : L ∼= L that is the identity on F ⊆ L

is an element of the Galois group Gal(L/F). In due course, one would see that we can construct

elements of the Galois group Gal(L/F) when L is a splitting field over F .

Example 4.7 (Cox p. 106 Question 13). Let L = Q
(√

2,
√

3
)

. Use Proposition 4.1 to prove that

there is

an isomorphism σ : L ∼= L such that σ

(√
2
)
=
√

2 and σ

(√
3
)
=−

√
3.

Solution. As a motivation, we observe that
√

2 is fixed under σ so we should consider the extension

Q
(√

2
)
⊆Q

(√
2,
√

3
)

†. We first claim that Q
(√

2,
√

3
)

is the splitting field of x2−3 over Q
(√

2
)

.

This is easy to see because x2 −3 is irreducible over Q
(√

2
)

. Hence, by Proposition 4.1,

there exists a field isomorphism σ : L → L that is the identity on Q
(√

2
)

and σ

(√
3
)
=−

√
3.

Here, we set α =
√

3 and β = −
√

3. As σ is the identity on Q
(√

2
)

, it follows that σ

(√
2
)
=

√
2. □

4.2. Normal Extensions

Proposition 4.2. Let L be the splitting field of f ∈ F [x], and let g ∈ F [x] be irreducible. If g

has one root in L, then g splits completely over L.

Example 4.8. We justify that Q
(

3
√

2
)

is not the splitting field of any polynomial in Q [x]. To see

why, recall that x3 − 2 is irreducible over Q and has a root in Q
(

3
√

2
)

. If this field were a splitting

field, then by Proposition 4.2, x3−2 must split completely over Q
(

3
√

2
)

. However, this is impossible

since Q
(

3
√

2
)
⊆ R does not contain the other two complex roots of x3 −2, namely ω

3
√

2 and ω2 3
√

2.

Definition 4.2 (normal extension). An algebraic extension F ⊆ L is normal if every irreducible

polynomial in F [x] that has a root in L splits completely over L.

Example 4.9 (Cox p. 109 Question 1). Prove that Q
(

4
√

2
)

is not the splitting field of any polynomial

in Q [x].

Solution. Note that (
x+ 4

√
2
)(

x− 4
√

2
)
= x2 −

√
2.

†I do not wish to make this part of the main notes but this is intended for readers who have already read the next chapter

on ’Galois groups’. We mentioned when motivating the solution to this question that
√

2 is fixed under σ , but we purposely

did not mention that σ
(√

3
)
= −

√
3, although this does not affect anything. One sees that this is an automorphism of

L =Q
(√

2,
√

3
)

since σ2
(√

3
)
=
√

3. We will revisit this idea in Example 5.7
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In order to obtain some polynomial in Q [x], the natural thing to do is to multiply x2 −
√

2 by its

conjugate x2+
√

2, which in turns yields x4−2. Note that x4−2 is irreducible over Q by Eisenstein’s

criterion (Theorem 3.7). Moreover, x4 − 2 is the minimal polynomial of 4
√

2 over Q but it has roots
4
√

2,− 4
√

2, i 4
√

2,−i 4
√

2.

However, the roots i 4
√

2,−i 4
√

2 are purely imaginary, so it is not contained in Q
(

4
√

2
)
⊆ R. Hence,

Q
(

4
√

2
)

is not a normal extension of Q, and the result follows. □

Example 4.10 (Cox p. 109 Question 2). Prove that an algebraic extension F ⊆ L is normal if and

only if

for every α ∈ L the minimal polynomial of α over F splits completely over L.

Solution. We first prove the forward direction. Suppose F ⊆ L is normal. Its minimal polynomial

of α , denoted by f ∈ F [x], is irreducible over F , so by definition, the minimal polynomial splits

completely over L.

Conversely, let g be some irreducible polynomial in F [x] that has a root α ∈ L, so g is the minimal

polynomial of α over L. Hence, g splits completely over L, making F ⊆ L a normal extension. □

Theorem 4.3. Suppose F ⊆ L. Then,

L is the splitting field of some f ∈ F [x] if and only if F ⊆ L is normal and finite.

Example 4.11 (Cox p. 109 Question 3). Determine whether the following extensions are normal.

Justify your answers.

(a) Q⊆Q(ζn) where ζn = e2πi/n

(b) Q⊆Q
(√

2, 3
√

2
)

(c) F = F3 (t)⊆ F (α), where t is a variable and α is a root of x3 − t in a splitting field

Solution.

(a) Consider

ζ
k
n = e2kπi/n where 0 ≤ k ≤ n−1.

It follows that ζ k
n ∈ Q(ζn), so Q(ζn) is the splitting field of xn − 1 over Q. By Theorem 4.3,

Q⊆Q(ζn) is normal.

(b) The minimal polynomial of Q
(

3
√

2
)

over Q is x3 − 2, which is irreducible over Q. However,

this polynomial does not split completely over Q
(√

2, 3
√

2
)

since the other roots are complex.

By Definition 4.2, Q⊆Q
(√

2, 3
√

2
)

is not a normal extension.

(c) Since char(F) = 3, then

x3 − t = (x−α)3 where α ∈ F (α) .
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Since this polynomial splits into linear factors over F (α), it follows that F (α) is a splitting

field for x3 − t over F3 (t). By Theorem 4.3, F3 (t)⊆ F (α) is a normal extension.

Example 4.12 (Cox p. 109 Question 4). Give an example of a normal extension of Q that is not

finite.

Solution. We will show that

Q⊆ A is a normal extension but infinite.

Recall that A is an algebraically closed field by Theorem 3.10. Say f ∈ Q [x] is an irreducible

polynomial over Q, so f ∈ A [x]. Recall the definition of an algebraically closed field (Definition

3.5) which mentions that f must split completely over A. As such, Q⊆ A is a normal extension.

However, in Example 3.33, we used the tower theorem to deduce that [A : Q] is infinite, so Q⊆ A is

not a finite extension. □

4.3. Separable Extensions

Given a non-constant polynomial f ∈ F [x] with splitting field F ⊆ L, we can write

f = a0

n

∏
i=1

(x−αi) where a0 ∈ F and α1, . . . ,αn ∈ L.

It is important to realise that α1, . . . ,αn are not always distinct. This is quite obvious. For example,

f (x) = x2 −2x+1 ∈Q [x] has α1 = α2 = 1.

Here, we will study special polynomials for which the roots are all different. Such polynomials are

given a special name — separable.

Definition 4.3. Let f ∈ F [x] be a non-constant polynomial such that

f = a0

n

∏
i=1

(x−αi) where a0 ∈ F and α1, . . . ,αn ∈ L.

Then, we can write this equation as

f = a0

n

∏
i=1

(x−βi)
mi where a0 ∈ F and β1, . . . ,βr ∈ L are distinct and m1, . . . ,mr ≥ 1.

We say that mi is the multiplicity of βi. βi is a simple root if mi = 1 and a multiple root if mi > 1.

We now define what a separable polynomial is.

Definition 4.4 (separable polynomial). A polynomial f ∈F [x] is separable if it is non-constant

and its roots in a splitting field are all simple. In other words, f is separable if it has distinct

roots.
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Note that the definition of a separable polynomial is independent of the splitting field used since all

splitting fields of f over F are unique up to isomorphism.

In order to study separability, we will use a tool that was discussed at the early stage of the course —

the discriminant ∆! In particular, we shall consider the discriminant ∆( f ) ∈ F of a monic polynomial

f ∈ F [x]. Recall that if deg( f )> 1, then

∆( f ) = ∏
i< j

(
αi −α j

)2 when f =
n

∏
i=1

(x−αi) .

Another tool that we will need is the formal derivative, which for a polynomial g = a0 +a1x+ . . .+

an−1xn−1 +anxn ∈ F [x] is defined to be

g′ = a1 + . . .+(n−1)an−1xn−2 +nanxn−1.

The operation g 7→ g′ enjoys the usual properties from Calculus, including

(ag+bh)′ = ag′+bh′ and (gh)′ = gh′+g′h

for g,h ∈ F [x] and a,b ∈ F . On page 117 of Cox’s textbook, Question 1 asks the reader to prove these

two results, which are rather trivial since they enjoy nice properties of derivatives of polynomials. We

now see that separability, the discriminant, and the formal derivative are related as follows:

Proposition 4.3. If f ∈ F [x] is monic and non-constant, then the following are equivalent:

(i) f is separable

(ii) ∆( f ) ̸= 0

(iii) f and f ′ are relatively prime in F [x], i.e. gcd( f , f ′) = 1

Definition 4.5 (separable element and separable extension). Let F ⊆ L be an algebraic

extension.

(i) α ∈ L is separable over F if its minimal polynomial over F is separable

(ii) F ⊆ L is a separable extension if every α ∈ L is separable over F

We can interpret the separability of a polynomial in terms of its irreducible factors as follows:

Lemma 4.1. A non-constant polynomial f ∈ F [x] is separable if and only if it is a product of

irreducible polynomials, each of which is separable and no two of which are multiples of each

other.

Lemma 4.2. Let f ∈ F [x] be an irreducible polynomial of degree n. Then, f is separable if

either

char(F) = 0 or char(F) = p > 0 and p does not divide n.
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Here, p is prime.

Example 4.13. Consider f = xn −1 ∈ F [x], where n > 0. By Proposition 4.3,

f is separable if and only if gcd
(

f , f ′
)
= 1.

The gcd claim can be put more explicit, i.e. noting that f ′ = nxn−1, we must have gcd
(
xn,nxn−1)= 1.

If n ̸= 0 in F , then the only irreducible factor of f ′ is x, which does not divide f . Hence, gcd( f , f ′)= 1.

On the other hand, if n = 0 in F , then f ′ = 0. It follows that f | f ′, i.e. gcd( f , f ′)> 1. It follows that

xn −1 ∈ F [x] fails to be separable if and only if char(F) = p and p divides n.

Proposition 4.4. If char(F) = 0, then the following hold:

(i) Every irreducible polynomial in F [x] is separable

(ii) Every algebraic extension of F is separable

(iii) A non-constant polynomial f ∈F [x] is separable if and only if f is a product of irreducible

polynomials, no two of which are multiples of each other

We briefly talk about the proof of (ii). Let L be an algebraic extension of F , so the minimal

polynomial of α over F is separable. The result follows.

In fields with characteristic 0, we can get rid of multiple roots as follows:

Proposition 4.5. Suppose char(F) = 0, and suppose f ∈ F [x] has the factorisation f =

cgm1
1 . . .gml

l , where c ∈ F , gi ∈ F [x] is monic and irreducible for all 1 ≤ i ≤ l and g1, . . . ,gl

are distinct. Then,

f
gcd( f , f ′)

= cg1 . . .gl.

Furthermore, g1, . . . ,gl is separable and has the same roots as f in a splitting field.

This proposition is more powerful than it seems. For example, suppose we have a polynomial f ∈
F [x] that has multiple roots in a splitting field, say

f = a0 (x−β1)
m1 . . .(x−βr)

mr where a0 ∈ F and β1, . . . ,βr distinct and ml ≥ 1.

If we ignore the multiplicities, the new obtain the separable polynomial

g = a0

r

∏
i=1

(x−βi) which has the same roots as f .

There are some methods to find g but we will not discuss them.

We then discuss some properties of fields of characteristic p.
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Lemma 4.3 (freshman’s dream). Let F be a field of characteristic p and α,β ∈ F . Then,

(α +β )p = α
p +β

p and (α −β )p = α
p −β

p.

These properties mentioned in Lemma 4.3 are specific instances of freshman’s dream, i.e. in fields

of characteristic p. The name is somewhat informal and playful, as it refers to the naïve hope that

(α +β )n =αn+β n might hold for general exponents n, which is true in characteristic p for n= p, but

not in general. For example, over the real numbers, (x+ y)2 and x2 + y2 are two distinct expressions.

More formally, these equalities in Lemma 4.3 follow from the Frobenius endomorphism in fields

of characteristic p. This refers to the map x 7→ xp. The key property of fields of characteristic p is that

the binomial coefficients
(p

k

)
for 1 ≤ k ≤ p−1 are divisible by p, making all the intermediate terms in

the binomial expansion of (α +β )p and (α −β )p vanish modulo p. In fact, this is precisely a rough

sketch of the proof of Lemma 4.3.

Perhaps covered in MA3201, a ring homomorphism is a special type of endomorphism. As (αβ )p =

α pβ p, it follows that the map α 7→ α p is a ring homomorphism over any field F of characteristic

p (the weaker statement as mentioned is the Frobenius endomorphism but we usually refer to it as

mentioned or the Frobenius homomorphism interchangeably).

Example 4.14 (Cox p. 117 Question 3). Let F be a field of characteristic p. The nth roots of unity

are defined to be

the roots of xn −1 in the splitting field F ⊆ L of xn −1.

(a) If p does not divide n, show that there are n distinct nth roots of unity in L.

(b) Show that there is only one pth root of unity, namely 1 ∈ F .

Solution.

(a) Here, we take n ≥ 1. As f = xn −1, then f ′ = nxn−1. Suppose p does not divide n, then n ̸= 0

in the field F of characteristic p. Hence, n is a unit in F [x].

It suffices to show that f is a separable polynomial, for which it follows that the n roots of

f in its splitting field, which are the nth roots of unity, are distinct. By Proposition 4.3, it suffices

to show that gcd( f , f ′) = 1 in F [x].

We have

x
(
nxn−1)−n(xn −1) = x f ′−n f .

By the converse of Bézout’s lemma, it follows that gcd( f , f ′) = 1.

(b) By freshman’s dream (Lemma 4.3), since char(F) = p, then xp − 1 = (x−1)p. As such, the

only pth root of unity is 1.
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Example 4.15. Let F = k (t), where k is a field of characteristic p and t is a variable. We will prove

that

f = xp − t ∈ F [x] is non-separable and irreducible over F.

To see why, note that f has no roots in F by a long and painful argument in Example 3.22. Since p is

prime, by Proposition 3.3, f is irreducible over F . Also, if α ∈ L is a root of f in its splitting field L,

then α p = t. By freshman’s dream (Lemma 4.3), we have

(x−α)p = xp −α
p = xp − t.

Hence, f does not have distinct roots in its splitting field f . So, f is not a separable polynomial.

Example 4.16. Let F2 be the field of two elements. Then, f = x2 + x+ 1 ∈ F2 [x] is irreducible

since it has no roots in F2. This is easy to check as f (0) = f (1) = 1. Since f ′ = 2x+ 1 = 1, then

gcd( f , f ′) = 1. By Proposition 4.3, it follows that f is a separable polynomial.

We then give some conditions that imply separability.

Theorem 4.4. Here are some conditions that imply separability.

(i) If L = F (α1, . . . ,αn), where each αi is separable over F , then F ⊆ L is separable

(ii) If F ⊆ L is the splitting field of a separable polynomial, then F ⊆ L is separable

(iii) If F ⊆ K and K ⊆ L are separable extensions, then F ⊆ L is separable

We shall discuss the converse of (iii) of Theorem 4.4.

Example 4.17 (Cox p. 118 Question 14). Let F ⊆ K ⊆ L be field extensions, and assume that L is

separable over F . Prove that

F ⊆ K and K ⊆ L are separable extensions.

Solution. We have every element of L being separable over F . So, every element of K is separable

over F , making F ⊆ K a separable extension.

Next, let α ∈ L. As α is separable over F , then its minimal polynomial f ∈ F [x] is separable. In

turn, f only has simple roots in a splitting field F ′ of f over L. Since f (α) = 0 and f ∈ F [x]⊆ K [x],

it follows that the minimal polynomial fK of α over K divides f .

As such, the order of the multiplicity of a root of fK is at most the order of the multiplicity of this root

in f . Thus, all roots of fK in the splitting field F ′ are simple. So, α is separable over K. It follows that

K ⊆ L is separable. □

Example 4.18 (Cox p. 118 Question 9). Let F be a field of characteristic p and consider f (x) =

xp −a ∈ F [x]. Assume that

f (x) has no root in F so that f (x) is irreducible over F.

Let α be a root of f (x) in some extension of F .
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(a) Show that F(α) is the splitting field of f (x) and [F(α) : F ] = p.

(b) Let β ∈ F(α) with β ̸∈ F . Show that β p ∈ F .

(c) Use (a) and (b) to show that the minimal polynomial of β over F is xp −β p.

(d) Conclude that F(α) is purely inseparable. That is to say, every element in F(α) but not in F is

not separable over F .

Solution.

(a) We see that f (x) = xp −α = (x−α)p has only one root α , where the second equality follows

from char(F) = p. The splitting field of f (x) over F is thus F(α). Since f (x) is the minimal

polynomial of α over F , then [F(α) : F ] = deg( f ) = p.

(b) We have β ∈ F(α)\F . There exists a polynomial p(x) = ∑aixi ∈ F [x] such that

β = p(α) = ∑aiα
i.

By the binomial theorem,

β
p = ∑ap

i α
pi ∈ F.

The inclusion follows as we can repeatedly apply α p = a.

(c) It is clear that β is a root of xp − β p ∈ F [x]. This is equivalent to (x− β )p. As β ̸∈ F , then

xp −β p has no root in F , implying that xp −β p is irreducible over F . The result follows.

(d) From (c), any β ∈ F (α)\F has a minimal polynomial of the form xp − β p = (x−β )p. This

polynomial consists of repeated roots — specifically, all roots are identical. So, β is not

separable over F .

Definition 4.6 (Artin-Schreier polynomial). Let F be a field of characteristic p, where p is

prime. For α ∈ F , the polynomial

xp − x−α is called an Artin-Schreier polynomial.

Example 4.19 (Cox p. 119 Question 16). Let F have characteristic p and consider f = xp−x+a ∈
F [x].

(a) Show that f is separable.

(b) Let α be a root of f in some extension of F . Show that α +1 is also a root.

(c) Use (b) to show that f splits completely over F (α).

(d) Use (a) of Theorem 4.4, which states that if

L = F (α1, . . . ,αn) where α1, . . . ,αn are separable over F then F ⊆ L is separable,

to show that

F ⊆ F (α) is separable and normal.

Solution.
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(a) We have f ′ = pxp−1 − 1. Using (i) and (iii) of Proposition 4.3 on equivalent conditions for a

polynomial f ∈ F [x] to be separable, it suffices to prove that

gcd
(
xp − x+a, pxp−1 −1

)
= 1.

In characteristic p,

pxp−1 −1 ≡−1 (mod p) .

Since gcd(xp − x+a,−1) = 1 by definition, the result follows.

(b) Let F̃ be an extension of F . Consider

α
p −α +a = 0 where α ∈ F̃ .

Then,

(α +1)p − (α +1)+a = α
p +1−α −1+a by Freshman’s dream (Lemma 4.3)

= α
p −α +a = 0

so α +1 is also a root of f in F̃ [x].

(c) By (b), we see that α +2, . . . ,α + p−1 are also roots of f ∈ F [x]. Together with α and α +1,

these roots are distinct since 0,1, . . . , p− 1 are the p distinct elements of the prime subfield of

F , which is isomorphic to Z/pZ. As such, f splits completely over F (α).

(d) One sees that

F (α) = F (α,α +1, . . . ,α + p−1)

so F (α) is the splitting field of f . Since the Artin-Schreier polynomial f = xp − x + a is

irreducible over F , then F ⊆ F (α) is a normal extension by Definition 4.2.

Next, we prove that F ⊆ F (α) is a separable extension. By (a), f is separable so the minimal

polynomial of α over F divides f , which has simple roots by (i) of Definition 4.5. As such,

the minimal polynomial also has simple roots. Since each α + k is separable over F for

0 ≤ k ≤ p−1, by (a) of Theorem 4.3, F ⊆ F (α) is a separable extension.

4.4. Primitive Element Theorem

Of the extension fields F ⊆ L studied so far, the nicest case is when L = F (α) for some α ∈ L.

When this happens, we say that α is a primitive element of F ⊆ L. Here, we will show that many but

not all finite extensions have primitive elements.

Theorem 4.5 (primitive element theorem). Let F ⊆ L = F (α1, . . . ,αn) be a finite extension,

where each αi is separable over F . Then, there exists α ∈L separable over F such that L=F (α).
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Furthermore, if F is infinite, then α can be chosen to be of the form

α = t1α1 + . . .+ tnαn where t1, . . . , tn ∈ F.

To put it simply, the primitive element theorem (Theorem 4.5) states that every finite separable field

extension is simple. By the term ‘simple’, we mean that the extension field is generated by a single

element, for which in this case, we have L = F (α).

Corollary 4.2. Let F ⊆ L be a finite extension. Then, the following hold:

(a) If F ⊆ L is separable, then there exists α ∈ L such that L = F (α).

(b) If char(F) = 0, then there exists α ∈ L such that L = F (α). Furthermore, if L =

F (α1, . . . ,αn), then α can be chosen to be of the form

α = t1α1 + . . .+ tnαn where t1, . . . , tn ∈ F.

Corollary 4.2 tells us that all finite separable extensions have primitive elements. However, there

exist extensions F ⊆ L = F (α) which are not separable but have a primitive element. Steinitz’s

theorem (Theorem 4.6) characterises all finite extensions that have primitive elements (note that this

should not be confused with the Steinitz exchange lemma in Linear Algebra).

Theorem 4.6 (Steiniz’s theorem). A finite extension F ⊆ L has a primitive element if and

only if there are only finitely many intermediate fields F ⊆ k ⊆ L.

Example 4.20. Consider the extension Q⊆Q
(√

2,
√

3
)

. Suppose f = x2−2 and g = x2−3. Then,

f has roots β1 =
√

2 and β2 =−
√

2; g has roots γ1 =
√

3 and γ2 =−
√

3. We claim that

α =
√

2+λ
√

3 is a primitive element of Q⊆Q
(√

2,
√

3
)

for all λ ∈Q\{0} .

In other words, Q
(√

2,
√

3
)
=Q(α). Let α =

√
2+λ

√
3. Then, we have

(
α −

√
2
)2

= 3λ
2 so α

2 −2α
√

2+2 = 3λ
2.

It follows that
√

2 and
√

3 can be expressed in terms of α . As such, Q(α) =Q
(√

2,
√

3
)

.

Not all finite extensions have primitive elements. As shown in (a) of Corollary 4.2, such an

extension cannot have characteristic 0. We give an example in characteristic p in Example 4.23, but

before that, we use some preliminary results obtained in Example 4.21, which was left as an exercise

problem in Cox’s book.

Example 4.21 (Cox p. 123 Question 4). In the extension F ⊆ L of Example 4.23, we have F =

k (t,u), where k has characteristic p and L is the splitting field of (xp − t)(xp −u) ∈ F [x]. We also

have α,β ∈ L satisfying α p = t and β p = u. Prove the following properties of F ⊆ L:

(a) L = F (α,β ) and [L : F ] = p2
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(b) [F (γ) : F ] = p for all γ ∈ L\F

(c) F ⊆ L is purely inseparable

Solution.

(a) Since α,β ∈ L and because F ⊆ L, then F (α,β ) ⊆ L. We then prove the reverse inclusion.

Since char(F) = p, then

f = (xp − t)(xp −u) = (x−α)p (x−β )p by freshman’s dream

and this polynomial only has the roots α and β . So, the splitting field of f over F is F (α,β ).

So, the reverse inclusion holds and it follows that L = F (α,β ).

For the next part, it suffices to use the tower theorem (Theorem 3.9) to deduce that

[L : F ] = [L : F (α)] [F (α) : F ] = p · p = p2.

The polynomial xp − u has no root in k (t,u,α) = F (α). Since p is prime, by Proposition 3.3,

h = xp − u is irreducible over F (α). Hence, h is the minimal polynomial of β over F (α). As

such, by the tower theorem (Theorem 3.9), we have

[L : F (α)] = [F (α,β ) : F (α)] = deg(xp −u) = p.

Also, xp − t has no root in F (t) and it is irreducible. So, xp − t is the minimal polynomial of α

over F , implying that [F (α) : F ] = p. The result follows.

(b) Suppose γ ∈ L\F . We would see in Example 4.23 that the extension F ⊆ L has no primitive

element, so F (γ) ̸= L. As such, F (γ) is a proper subset of L.

By the tower theorem, d = [F (γ) : F ] divides p2 = [L : F ]. If d = 1, then F (γ) =F , where γ ∈F .

Also, if d = p2, then F (γ) = L. In these two cases, we obtain a contradiction, so [F (γ) : F ] = p.

(c) By (b), the degree of the minimal polynomial of γ over F is p. It suffices to prove that every

γ ∈ L\F is inseparable. Since γ p ∈ F , then γ p is a root of xp − b ∈ F [x], which implies the

minimal polynomial divides xp − b. In fact, this is precisely the minimal polynomial of γ over

F . As char(k) = p, it follows that xp − b = (x− γ)p, i.e. the polynomial is not separable. The

result follows.

Example 4.22 (Cox p. 123 Question 5). Let k = Fp, the finite field of p elements and F = k(t,u),

where t and u are independent variables. Let α and β be roots of xp − t and xp − u respectively. Let

L = F(α,β ). Consider the intermediate fields F ⊆ F(α +λβ ) ⊆ L as λ varies over all elements of

F . Suppose λ ̸= µ are two elements of F such that F(α +λβ ) = F(α +µβ ).

(a) Show that α,β ∈ F(α +λβ ).

(b) Conclude that F(α +λβ ) = F(α,β ) and explain why this is impossible.

This example shows that there are infinitely many intermediate fields between F and L.

Solution.
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(a) Since λ ,µ ∈ F , then λ ,µ ∈ F(α +λβ ). Thus, α +λβ ∈ F(α +λβ ) and α +µβ ∈ F(α +λβ ).

Since F(α + λβ ) is a subfield, the difference of α + λβ and α + µβ is in F(α + λβ ) too.

That is, (λ − µ)β ∈ F(α +λβ ). Since λ ̸= µ , then β ∈ F(α +λβ ). It is then clear that α ∈
F(α +λβ ).

(b) The inclusion F(α +λβ )⊆ F(α,β ) is clear since L = F(α,β ). The reverse inclusion follows

by (a). However, F(α,β ) has no primitive element (i.e. an element that generates F(α,β ))

which is a contradiction. This shows that all the fields F(α +λβ ), where λ varies all elements

of F , are distinct. F being finite, there exists infinitely many intermediate fields between F and

L.

Example 4.23. Let k be a field of characteristic p and let t,u be variables. Consider the extension

field

F = k (t,u)⊆ L where L is the splitting field of (xp − t)(xp −u) ∈ F [x] .

Thus, there exist α,β ∈ L with α p = t and β p = u. As such, L = F (α,β ) and [L : F ] = p2.

We shall prove that F = k (t,u) has no primitive element. Given γ ∈ L, we can use L = F (α,β ) =

F [α,β ] to write γ as the following finite sum:

γ = ∑
i, j

ai jα
i
β

j where ai j ∈ F

As such,

γ
p =

(
∑
i, j

ai jα
i
β

j

)p

= ∑
i, j

ap
i jα

ip
β

jp

where the second equality follows from the fact that char(F) = p. Since α p = t and β p = u, then

γ
p = ∑

i, j
ap

i jt
iu j ∈ F.

Hence, γ is a root of xp − γ p ∈ F [x], so that [F (γ) : F ]≤ p. Since [L : F ] = p2, then L ̸= F (γ) for all

γ ∈ L. Thus, F ⊆ L has no primitive element.
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5. The Galois Group and The Galois Correspondence

5.1. Galois Groups

If L is a field, then

an automorphism of L is a field isomorphism σ : L → L.

Definition 5.1 (Galois group). Let F ⊆ L be a finite extension. Then, Gal(L/F) is the set

{σ : L → L : σ ∈ Aut(L) and σ (a) = a for all a ∈ F} .

What Definition 5.1 means is that Gal(L/F) consists of all automorphisms of L that fix a ∈ F , i.e.

the identity on F . Having said that, although Definition 5.1 is very different from the one given by

Galois himself, they are actually equivalent. Galois actually only dealt with splitting fields, and for

him, the Galois group consisted of certain permutations of the roots.

Proposition 5.1. Gal(L/F) is a group under compositiion.

Proof. Suppose σ ,τ ∈ Gal(L/F). Then,

σ ,τ : L → L are automorphisms.

It follows that στ , which refers to the composition σ ◦ τ : L → L, is also an automorphism. Also, if

a ∈ F , then

σ ◦ τ (a) = σ (τ (a)) = σ (a) = a since σ ,τ are the identity on F.

As such, composition gives an operation on Gal(L/F) which is associative by standard properties of

composition.

The identity map 1L : L → L is an isomorphism that is the identity on F . As such, 1L is an

automorphism, implying that 1L ∈ Gal(L/F). Moroever, one checks that

σ ◦1L = 1L ◦σ = σ for all σ ∈ Gal(L/F)

so 1L is the identity element of Gal(L/F).

Lastly, any σ ∈ Gal(L/F) is an automorphism, which means that its inverse σ−1 : L → L is also

an automorphism. Also, if a ∈ F , then a = σ (a), which implies σ−1 (a) = σ−1 (σ (a)). This shows

that σ−1 ∈ Gal(L/F), i.e. existence of inverse element in group is established.

It follows that Gal(L/F) is a group under composition.
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By Proposition 5.1, we know that Gal(L/F) is a group under composition. We call Gal(L/F)

the Galois group of F ⊆ L. In order to compute Galois groups, we need to know how elements of

Gal(L/F) behave. We begin with the following observation:

Lemma 5.1. Let F ⊆ L be finite, and fix σ ∈ Gal(L/F). Given h ∈ F [x1, . . . ,xn] and

β1, . . . ,βn ∈ L, then

σ (h(β1, . . . ,βn)) = h(σ (β1) , . . . ,σ (βn)) .

In particular, if h ∈ F [x] and β ∈ L, then σ (h(β )) = h(σ (β )).

Proof. This pretty much follows from Proposition 5.1, where we note that σ preserves addition and

multiplication, and it is also the identity on the coefficients of h.

Following this, there are some nice consequences concerning the Galois group.

Proposition 5.2. Let F ⊆ L be a finite extension and let σ ∈ Gal(L/F). Then, the following

hold:

(a) If h ∈ F [x] is a non-constant polynomial with α ∈ L as a root, then σ (α) is also a root of

h lying in L.

(b) If L = F (α1, . . . ,αn), then σ is uniquely determined by its values on α1, . . . ,αn.

Corollary 5.1. Let F ⊆ L be a finite extension. Then, Gal(L/F) is finite.

Proof. Since F ⊆ L is finite, then L = F (α1, . . . ,αn), where each αi is algebraic over F . Suppose σ ∈
Gal(L/F). By (b) of Proposition 5.2, σ is uniquely determined by σ (α1) , . . . ,σ (αn). Let pi ∈ F [x]

be the minimal polynomial of αi. By (a) of Proposition 5.2, there are at most deg(pi) possibilities for

σ (αi). So, Gal(L/F) is finite.

Example 5.1 (Cox p. 129 Question 1). Let L = F (α1, . . . ,αn), and let pi ∈ F [x] be a non-zero

polynomial vanishing at αi. Explain why the proof of Corollary 5.1 implies that

|Gal(L/F)| ≤ deg(p1) . . .deg(pn) .

Solution. In the proof, we mentioned that by (b) of Proposition 5.2, σ ∈ Gal(L/F) is uniquely

determined by σ (α1) , . . . ,σ (αn), where ea αi is algebraic over F . Since pi (αi) = 0, applying σ

on both sides yields

σ (pi (αi)) = σ (0) so pi (σ (αi)) = 0.

This means that σ (αi) is also a root of pi. Consequently, σ (αi) can only take values in the set of

roots of pi. As such, pi has at most deg(pi) roots. For each αi, σ (αi) can only take one of these at

most deg(pi) roots. The result follows. □
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Example 5.2 (Cox p. 130 Question 5). Prove the following inequalities:

(a
∣∣∣Gal

(
Q
(√

2,
√

3,
√

5
)
/Q
)∣∣∣≤ 8

(b
∣∣Gal

(
Q
(√

p1, . . . ,
√

pn
)
/Q
)∣∣≤ 2n, where p1, . . . , pn are the first n primes

In each case, one can show that these are actually equalities.

Solution.

(a) We see that 2,3,5 are the first three primes, so we shall denote them by p1, p2, p3 respectively.

Note that the minimal polynomial of
√

pi over Q is x2 − pi. Let the minimal polynomial be

denoted by qi. Then, deg(qi) = 2. So, the order of the Galois group can be bounded above by

23 = 8.

In fact, we proved the equality case.

(b) Very similar idea compared as (a).

Example 5.3 (Cox p. 130 Question 6). Let L =Q
(√

6,
√

10,
√

15
)

. Show that Gal(L/Q)≤ 4.

Solution. Note that
√

15 ∈ Q
(√

6,
√

10
)

because
(√

6+
√

10
)2

= 16 + 4
√

15. Hence, L =

Q
(√

6,
√

10
)

and the result follows. □

Example 5.4. Consider the extension

Q⊆ L =Q
(

3
√

2
)
.

Again, the minimal polynomial of 3
√

2 over Q is x3 − 2, which has roots 3
√

2,ω 3
√

2,ω2 3
√

2, where

ω = e2πi/3. The last two are not real and hence, cannot lie in L.

As such, every σ ∈ Gal(L/Q) must satisfy σ

(
3
√

2
)
= 3

√
2 (recall that this Galois group must contain

automorphisms of L, but more importantly, they must fix the elements in the subfield Q). Since σ is

uniquely determined by σ

(
3
√

2
)

, it must be the identity (note that (b) of Proposition 5.2 is used here).

As such, Gal(L/Q) = {1L}.

We now provide some examples of non-trivial Galois groups.

Example 5.5 (complex conjugation). Let

τ : C→ C be complex conjuation, i.e. τ (z) = z for z ∈ C.

Note that τ is a homomorphism of fields since C is a field. Also, τ is an automorphism because τ ◦ τ

is the identity. Furthermore,

for any a ∈ R we have τ (a) = a so τ ∈ Gal(C/R) .

As such, Gal(C/R) has at least two elements since 1C ∈ Gal(C/R).

We also know that C = R(i). Since the roots of x2 + 1 are ±i, by (b) of Proposition 5.2, every
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σ ∈ Gal(C/R) is uniquely determined by σ (i) =±i. To be slightly more explicit, we have

(σ (i))2 = σ (i) ·σ (i) = (±i)2 =−1

for which (b) of Proposition 5.2 becomes more apparent. Hence, Gal(C/R) has at most two elements.

We conclude that |Gal(C/R)|= 2, i.e.

Gal(C/R) = {1C,τ} so Gal(C/R)∼= Z/2Z.

Example 5.6. Recall our favourite extension Q⊆ L =Q
(√

2
)

. Again, by (b) of Proposition 5.2,

σ ∈ Gal(L/Q) is uniquely determined by σ

(√
2
)
=±

√
2.

Thus, |Gal(L/Q)| ≤ 2. In fact, equality holds. We shall see why from two perspectives.

• Perspective 1: One notes that σ

(
a+b

√
2
)
= a− b

√
2 is an automorphism of L. This is easy

to see because σ2
(

a+b
√

2
)
= a+b

√
2.

• Perspective 2: L = Q
(√

2
)

is the splitting field of x2 − 2 over Q. Since x2 − 2 is irreducible

over Q and ±
√

2 ∈ L, by Proposition 4.1, there exists an automorphism of L, say σ , such that

σ

(√
2
)
=−

√
2 and is the identity on Q.

Example 5.7 (Cox p. 129 Question 2). For the extension Q ⊆ L = Q
(√

2,
√

3
)

, we see that σ ∈
Gal(L/Q) is uniquely determined by

σ

(√
2
)
=±

√
2 and σ

(√
3
)
=±

√
3 by Proposition 5.2.

Again, this proposition keeps appearing! The natural question is whether all possible sign equations

in the above two equations actually occur. If so, it would imply that |Gal(L/Q)|= 4.

We now address the elephant in the room, which is precisely the question taken from Cox’s textbook.

Consider the extension Q⊆ L =Q
(√

2,
√

3
)

. In Example 4.7, we used Proposition 4.1 to construct

an automorphsim of L that takes
√

3 to −
√

3 and is the identity on Q
(√

2
)
.

By interchanging the roles of 2 and 3 in this construction, explain why all possible signs in σ

(√
2
)
=

±
√

2 and σ
(√

3
)
=±

√
3 can occur. This shows that |Gal(L/Q)|= 4.

Solution. In Example 4.7, we considered the extension Q
(√

2
)
⊆Q

(√
2,
√

3
)

. This time, to achieve

the opposite effect, we shall consider the extension Q
(√

3
)
⊆ Q

(√
2,
√

3
)

instead. By Proposition

4.1,

there exists an isomorphism τ : L → L such that τ

(√
3
)
=
√

3 and τ

(√
2
)
=−

√
2.

In other words, τ is the identity on Q
(√

3
)

and it takes
√

2 to −
√

2.
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In Proposition 5.1, we know that Gal(L/Q) is a group under composition. So, for any σ ,τ ∈
Gal(L/Q), the closure property of a group is satisfied, i.e. στ ∈ Gal(L/Q). As such, (στ)

(√
2
)
=

−
√

2 and (στ)
(√

3
)
= −

√
3. This shows that all the aforementioned possibilities can occur, so

|Gal(L/Q)| ≥ 4. Earlier, we mentioned that |Gal(L/Q)| ≤ 4, so combining these two results yields

|Gal(L/Q)|= 4.

We can list the elements of this Galois group, which are

Gal
(
Q
(√

2,
√

3
)
/Q
)
= {1L,σ ,τ,στ} .

To reiterate again, we have the following:

1L

(√
2
)
=
√

2 and 1L

(√
3
)
=
√

3

σ

(√
2
)
=
√

2 and σ

(√
3
)
=−

√
3

τ

(√
2
)
=−

√
2 and τ

(√
3
)
=
√

3

(στ)
(√

2
)
=−

√
2 and (στ)

(√
3
)
=−

√
3

where each of the four maps are automorphisms L → L. □

Finally, we study what happens when we go to an isomorphic field.

Proposition 5.3 (conjugation by field isomorphism). Suppose F ⊆ L1 and F ⊆ L2 are finite

extensions, and let ϕ : L1 → L2 be an isomorphism that is the identity on F . Then, the map

sending σ to ϕ ◦σ ◦ϕ−1 defines a group isomorphism

Gal(L1/F)∼= Gal(L2/F) .

Isomorphisms of fields were first defined by Dedekind in 1877 under the name ‘permutations’. Here

is his definition.

Definition 5.2 (field isomorphism). Let Ω be a field. By a permutation of Ω, we mean a

substitution which changes each number

α,β ,α +β ,α −β ,αβ ,α/β of Ω

into a corresponding number

α
′,β ′,(α +β )′ ,(α −β )′ ,(αβ )′ ,(α/β )′

in such a way that

(α +β )′ = α
′+β

′ and (αβ )′ = α
′
β
′ are satisfied

and the substitute numbers α ′,β ′, . . . are not all zero. The set Ω′ of the latter numbers forms a

new field.
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We will see in Example 5.8 that

σ : Ω → Ω
′ given by α 7→ α

′ is an isomorphism of fields.

Example 5.8 (Cox p. 129 Question 4). In Definition 5.2, Dedekind defined a ‘permutation’ α 7→ α ′

to be a map Ω → Ω′ satisfying

(α +β )′ = α
′+β

′ and (αβ )′ = α
′
β
′ for all α,β ∈ Ω.

Dedekind also assumes that Ω′ = {α ′ : α ∈ Ω} and that the α are not all zero.

(a) Show that 1 ∈ Ω maps to 1 ∈ Ω′. Once this is proved, it follows that α 7→ α ′ is a ring

homomorphism (recall from MA3201 that sending 1 to 1 is part of the definition of ring

homomorphism).

(b) Show that the map α 7→ α ′ is one-to-one.

This shows that Dedekind’s definition of field isomorphism is equivalent to ours.

Solution.

(a) Let ϕ (α) = α ′. Then,

ϕ (α +β ) = ϕ (α)+ϕ (β ) and ϕ (αβ ) = ϕ (α)ϕ (β ) .

So,

ϕ (α) = ϕ (α ·1) = ϕ (α)ϕ (1) .

Since α ′ ̸= 0, then ϕ (α) =α ′ has an inverse in Ω′. So, ϕ (1) = 1, i.e. 1∈Ω is mapped to 1 ∈Ω′.

(b) Suppose ϕ (α1) = ϕ (α2). Then, ϕ (α1 −α2) = eΩ′ , where eΩ′ is the additive identity of Ω′. So,

α1 −α2 = 0, implying that α1 = α2. We conclude that ϕ is injective.

Definition 5.3 (Galois group of polynomial). Let f ∈ F [x]. The Galois group of f over F is

Gal(L/F), where L is a splitting field of f over F .

To check that Definition 5.3 makes sense, suppose L1 and L2 are splitting fields of f ∈ F [x]. By

Corollary 4.1, L1 ∼= L2 via an isomorphism that is the identity on F , so Gal(L1/F) ∼= Gal(L2/F) by

Proposition 5.3. Thus, the Galois group of f over F is well-defined up to isomorphism.

Example 5.9. Recall Example 5.5, where we mentioned that Gal(C/R)∼=Z/2Z. Note that x2+1 ∈
R [x], so the Galois group of x2 +1 over R is Z/2Z.

5.2. Galois Groups of Splitting Fields

Recall that a polynomial f ∈ F [x] is separable if it has distinct roots in splitting field. We now see

that the order of the Galois group Gal(L/F) is precisely the degree of the field extension.
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Theorem 5.1. Suppose L is the splitting field of a separable polynomial in F [x]. Then, the

Galois group of F ⊆ L has order

|Gal(L/F)|= [L : F ] .

In general, if the extension F ⊆ L is not a splitting field of a separable polynomial in F [x], we have

the inequality

|Gal(L/F)| ≤ [L : F ] .

This is not surprising by a previous example that we have just seen. Recall that in Example 5.4, we

showed that the Galois group Gal(L/Q) is trivial, where L =Q
(

3
√

2
)

. However, this extension is not

a splitting field. Since [L : Q] = 3 and |Gal(L/Q)|= 1, the inequality |Gal(L/Q)| ≤ [L : Q] is satisfied

— in fact, the inequality is strict in this case!

Moreover, we will see in the next chapter that if F ⊆ L is a finite extension, and the hypothesis in

Theorem 5.1 is satisfied, then we say that the extension F ⊆ L is a Galois extension, or more simply,

Galois (Definition 6.2).

Example 5.10. Consider the extension Q ⊆ L = Q
(√

2,
√

3
)

. In Example 5.7, we mentioned that

σ ∈ Gal(L/Q) is uniquely determined by

σ

(√
2
)
=±

√
2 and σ

(√
3
)
=±

√
3.

This shows that |Gal(L/Q)| ≤ 4. In fact, we also showed that equality holds. By the tower theorem

(Theorem 3.9), one can easily deduce that [L : Q] = 4 and L is the splitting field of the separable

polynomial
(
x2 −2

)(
x2 −3

)
. Hence, all of the above sign combinations must occur. We also showed

that there exists σ ,τ ∈ Gal(L/Q) such that

σ

(√
2
)
=
√

2 and σ

(√
3
)
=−

√
3 and

τ

(√
2
)
=−

√
2 and τ

(√
3
)
=
√

3

So, Gal(L/Q) = {1L,σ ,τ,στ}. In fact, one can easily deduce (to be discussed in Example 5.11) that

Gal(L/Q)∼=Z/2Z×Z/2Z, for which the direct product on the right is known as the Klein four-group

V (recall from MA2202).

Example 5.11 (Galois group isomorphic to V ; Cox p. 131 Question 1). Complete Example 5.10 by

showing that

Gal(L/Q) = {1L,σ ,τ,στ} and Gal(L/Q)∼= Z/2Z×Z/2Z.

Solution. The first part was already shown in Example 5.7. For the second part, consider the map

φ : Gal(L/Q)→ Z/2Z×Z/2Z where 1L 7→ (0,0) ,σ 7→ (0,1) ,τ 7→ (1,0) ,στ 7→ (1,1) .

It is obvious that φ is an isomorphism. □
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5.3. Permutations of Roots

Cardano’s formula! Hopefully it rings a bell. Early on in this set of notes, we saw that permutations

of the roots of a cubic arise naturally from Cardano’s formula. We now explain more generally how

Galois groups relate to permutations. As in the previous section, we assume that L is the splitting field

of a separable polynomial f ∈ F [x]. Our goal is to interpret Gal(L/F) in terms of the permutations of

roots of f .

Let n = deg( f ). Then, in L [x], we can write the product

f = a0

n

∏
i=1

(x−αi) where a0 ̸= 0 and α1, . . . ,αn ∈ L are distinct.

In this situation, we obtain a map

Gal(L/F)→ Sn

since each permutation σ ∈ Gal(L/F) maps the roots of f (x) to other roots, i.e. σ permutes the roots

α1, . . . ,αn. In fact, recall that σ (αi) is also a root of f , so that

σ (αi) = ατ(i) for some 1 ≤ τ (i)≤ n.

Since the αi’s are distinct, then τ (i) is uniquely determined. As σ is injective, then τ is also injective,

which implies τ ∈ Sn, i.e. τ is a permutation. In fact, the map Gal(L/F)→ Sn described earlier is an

injective group homomorphism (or monomorphism in short).

Proposition 5.4 (monomorphism from Galois group to Sn). Let n = deg( f ). Then, in L [x],

we can write the product

f = a0

n

∏
i=1

(x−αi) where a0 ̸= 0 and α1, . . . ,αn ∈ L are distinct.

Then, the map

Gal(L/F)→ Sn is an injective group homomorphism.

Recall from MA1100 the following fact: if A and B are non-empty finite sets, for map f : A → B,

f is injective if and only if |A| ≤ |B| .

One checks that Gal(L/F) and Sn satisfy the aforementioned hypotheses. So, by Proposition 5.4, it

follows that for the splitting field of a separable polynomial of degree n, we can regard the Galois

group as a subgroup of Sn. By Lagrange’s theorem, it follows that |Gal(L/F)| | n!. Since [L : F ] =

|Gal(L/F)| by Theorem 5.1, we obtain the following corollary:
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Corollary 5.2. If L is the splitting field of a separable polynomial in f ∈ F [x], then

[L : F ] | n! where n = deg( f ) .

We now provides some examples of Proposition 5.4 (monomorphism from Galois group to

symmetric group).

Example 5.12. Recall that the splitting field of f =
(
x2 −2

)(
x2 −3

)
over Q is L = Q

(√
2,
√

3
)

and Gal(L/Q) = {1,σ ,τ,στ), where

σ

(√
2
)
=
√

2 and σ

(√
3
)
=−

√
3 and

τ

(√
2
)
=−

√
2 and τ

(√
3
)
=
√

3

Now, let

α1 =
√

2,α2 =−
√

2,α3 =
√

3,α4 =−
√

3.

This is consistent with our notation in Proposition 5.4, where we mentioned that the αi’s are the

roots of the polynomial f =
(
x2 −2

)(
x2 −3

)
, where each αi ∈ L. So, Gal(L/Q) is isomorphic to a

subgroup of S4 by Proposition 5.4. The automorphism σ fixes α1 and α2 and interchanges α3 and

α4, which implies σ 7→ (34) ∈ S4; the automorphism τ fixes α3 and α4 and interchanges α1 and α2,

which implies τ 7→ (12) ∈ S4.

Consequently, στ 7→ (12)(34), where we used the fact that disjoint cycles commute (recall from

MA2202). So,

Gal(L/Q)∼= {e,(12) ,(34) ,(12)(34)} ⊆ S4.

Example 5.13. Consider the extension

Q⊆ L =Q
(

ω,
3
√

2
)

where ω = e2πi/3.

Since L is the splitting field of x3 − 2 over Q, we obtain an injective group homomorphism

Gal(L/Q) ↪→ S3 (recall that the hook denotes an injective map). Recall that [L : Q] = 6. Since [L : Q] =

|Gal(L/Q)| (Theorem 5.1; check that the hypothesis is satisfied), it follows that Gal(L/Q)∼= S3 since

|S3|= 6.

When one thinks of Galois groups in terms of permutations, it makes sense to ask how

properties of the permutations relate to properties of the corresponding field extension.

One nice example of this involves transitive subgroups of Sn. We now give its definition.
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Definition 5.4 (transitive subgroup). Let H ≤ Sn. We say that H is transitive if

for every pair of i, j ∈ {1, . . . ,n} there exists τ ∈ H such that τ (i) = j.

Example 5.14. A trivial example is that Sn is a transitive subgroup of itself since the transpostiion

(i j) takes i to j. However, not all subgroups of Sn are transitive.

Example 5.15. The subgroup

{e,(12) ,(34) ,(12)(34)} ≤ S4 is not transitive.

To see why, no element of the subgroup sends 1 to 3.

It is natural to ask if the subgroup of Sn corresponding to Gal(L/F) is transitive.

Proposition 5.5 (Jordan). Let F be the splitting field of a separable polynomial f ∈ F [x] of

degree n. Then, the subgroup of Sn corresponding to Gal(L/F) is transitive if and only if f is

irreducible over F .

Definition 5.4 defines a transitive subgroup of Sn. In fact, this can be generalised to any group

action, i.e. if a group G acts on a set X , then the action is transitive if

for all x,y ∈ X there exists g ∈ G such that g · x = y.

For example, if L is the splitting field of a separable polynomial f ∈ F [x], then Gal(L/F) acts on the

roots of f . As such, Jordan’s proposition (Proposition 5.5) can be restated as follows:

f is irreducible if and only if Gal(L/F) acts transitively on the roots of F.
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6. The Galois Correspondence

6.1. Galois Extensions

Previously, we learnt that splitting fields of separable polynomials are especially nice from the

perspective of Galois theory. We now wish to characterise such extensions in terms of normality and

separability. We will also apply this theory to study separable extensions.

Before delving into the main results, we introduce the idea of a fixed field.

Definition 6.1 (fixed field). Suppose we have a finite extension F ⊆ L with Galois group

Gal(L/F). Given a subgroup H ≤ Gal(L/F), we call

LH = {α ∈ L : σ (α) = α for all σ ∈ H} to be the fixed field of H.

Theorem 6.1. Let F ⊆ L be a finite extension. Then, the following are equivalent:

(a) L is the splitting field of a separable polynomial in F [x]

(b) F is the fixed field of Gal(L/F) acting on L

(c) F ⊆ L is a normal separable extension

Definition 6.2 (Galois extension). An extension F ⊆ L is Galois if

it is finite and it satisfies any of the conditions in Theorem 6.1.

We give an example of a Galois (Example 6.1) and a non-Galois extension (Example 6.2).

Example 6.1 (a Galois extension). The extension

Q⊆Q
(√

2,
√

3
)

is Galois.

To see why, Q
(√

2,
√

3
)

is the splitting field of
(
x2 −2

)(
x2 −3

)
over Q. By (a) of Theorem 6.1,

since the polynomial is separable, it follows that the extension is Galois.

Example 6.2 (a non-Galois extension). The extension Q ⊆ Q
(

3
√

2
)

is not Galois since x3 − 2

is irreducible over Q. Also, although x3 − 2 has a root in Q
(

3
√

2
)

, it does not split completely

over Q
(

3
√

2
)

. Recall Definition 4.2 on what it means for an extension to be normal — one of the

hypotheses requires the polynomial in the extension field to split completely, but as mentioned, this is

not satisfied, making the extension not normal. By (c) of Theorem 6.1, the result follows.

Proposition 6.1. Suppose F ⊆ L is a Galois extension and that we have an intermediate field

K satisfying F ⊆ K ⊆ L. Then, K ⊆ L is also a Galois extension.
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It is interesting to note that in Proposition 6.1, although

F ⊆ L and K ⊆ L are Galois it does not imply that F ⊆ K is Galois.

We will see an example of this in Example 6.3.

Example 6.3. Recall that

Q⊆Q
(

i, 4
√

2
)

is the splitting field of x4 −2.

So, the extension is Galois. Consider the intermediate fields Q(i) and Q
(

4
√

2
)

. Then, Q ⊆ Q(i) is

Galois as it is the splitting field of x2 + 1, but Q ⊆ Q
(

4
√

2
)

is not because x4 − 2 is the minimal

polynomial of 4
√

2 which does not split completely. Also, one checks that

Q
(

4
√

2
)
⊆Q

(
i, 4
√

2
)

and Q(i)⊆Q
(

i, 4
√

2
)

are Galois.

To summarise, we have the following diagram:

Q
(

i, 4
√

2
)

Q(i)

Q
(

4
√

2
)

Q

Galois

Galois

not Galois

Galois

Galois

We know that

F ⊆ L is Galois implies |Gal(L/F)|= [L : F ] .

For arbitrary finite extensions, the relation between the order of the Galois group and the degree of

the extension can be described as follows:

Theorem 6.2. Let F ⊆ L be a finite extension. Then, the following hold:

(a) |Gal(L/F)| | [L : F ]

(b) |Gal(L/F)| ≤ [L : F ]

(c) F ⊆ L is a Galois extension if and only if |Gal(L/F)|= [L : F ]

Proposition 6.2. Let F ⊆ L be a finite extension. Then, L is separable over F if and only if

L = F (α1, . . . ,αn), where each αi is separable over F .

We then introduce the idea of a Galois closure.
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Proposition 6.3. Let F ⊆ L be a finite separable extension. Then, there is an extension L ⊆ M

such that the following hold:

(a) M is Galois over F , i.e. F ⊆ M is a Galois extension

(b) Given any other extension L ⊆ M′ such that M′ is Galois over F , there is a field

homomorphism ϕ : M → M′ that is the identity on L.

6.2. Normal Subgroups and Normal Extensions Revisited

Previously, we introduced the idea of a normal extension. Also, in MA2202, normal subgroups

were discussed. In fact, it is not a coincidence that these concepts have the same name. We begin our

discussion with conjugate fields.

Recall from O-Level that

2−
√

3 is the conjugate of 2+
√

3.

We have an analogous definition for subfields.

Definition 6.3 (conjugate field). Let F ⊆ K ⊆ L be finite extensions. Suppose σ ∈ Gal(L/F)

is an automorphism. Then,

σK = {σ (α) : α ∈ K} is a conjugate field of K.

Technically, we should write σ (K) instead of σK but we would prefer the latter because it is less

cumbersome. Since σ is a field isomorphism, it follows that σK is subfield of L.

Lemma 6.1. Let F ⊆ K ⊆ L and σ ∈ Gal(L/F). Then,

F ⊆ σK ⊆ L and [L : F ] = [σK : F ] .

We now provide an example of conjugate fields.

Example 6.4 (conjugate field). Consider the extension Q ⊆ Q
(

ω, 3
√

2
)

, where ω = e2πi/3. Then,

we have the following intermediate fields:

Q

Q(ω) Q
(

3
√

2
)

Q
(

ω
3
√

2
)

Q
(

ω2 3
√

2
)

Q
(

ω, 3
√

2
)
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Well, let L =Q
(

ω, 3
√

2
)

. Then, σ ∈ Gal(L/Q) is uniquely determined by

σ (ω) ∈
{

ω,ω2} and σ

(
3
√

2
)
∈
{

3
√

2,ω 3
√

2,ω2 3
√

2
}
.

In fact (This is from Exercise 2 of Section 6.2 of Cox’s book, remember to add here), all possible

combinations of σ (ω) and σ

(
3
√

2
)

actually occur. In fact, we will see in Example 6.5 that the

following hold:

(a) Q
(

3
√

2
)

has conjugate fields Q
(

3
√

2
)

, Q
(

ω
3
√

2
)

, and Q
(

ω2 3
√

2
)

(b) Q(ω) equals all of its conjugates

Example 6.5 (Cox p. 160 Question 1). In the diagram shown in Example 6.4, verify the following:

(a) Q
(

3
√

2
)

has conjugate fields Q
(

3
√

2
)

, Q
(

ω
3
√

2
)

, and Q
(

ω2 3
√

2
)

(b) Q(ω) equals all of its conjugates

Solution.

(a) Note that there exist σ ,τ ∈ Gal(L/Q) such that

σ (ω) = ω and σ

(
3
√

2
)
= ω

3
√

2 and τ (ω) = ω
2 and τ

(
3
√

2
)
= ω

2 3
√

2.

Let G = Gal(L/Q) = ⟨σ ,τ⟩. Define K =Q
(

3
√

2
)

. We show that σK =Q
(

ω
3
√

2
)

. If β ∈ σK,

then we can write β = σ (α), where α ∈ K, so α = p
(

3
√

2
)

, where p ∈ Q [x]. Also, β =

σ

(
p
(

3
√

2
))

= p
(

ω
3
√

2
)

, which implies σK ⊆ Q
(

ω
3
√

2
)

. The proof of the reverse inclusion

is similar.

Now that we have deduced that

σK =Q
(

ω
3
√

2
)

it follows that σ
2K =Q

(
ω

2 3
√

2
)
.

Consequently, eK = K. As such, we have shown that the three mentioned fields are indeed

conjugate fields of Q
(

3
√

2
)

. Moreover, as τK = K and G = ⟨σ ,τ⟩, it follows that the conjugate

fields are unique.

(b) Since σ (ω)=ω and σ is the identity on Q, then σQ(ω)=Q(ω). Moreover, τQ(ω)=Q
(
ω2).

As ω2 +ω +1 = 0, it follows that ω2 =−1−ω , so Q
(
ω2)=Q(ω). As

σQ(ω) =Q(ω) and τQ(ω) =Q(ω) and G = ⟨σ ,τ⟩ ,

it follows that λQ(ω) =Q(ω) for all λ ∈ Gal(L/F).

We then relate intermediate fields to subgroups of the Galois group. We see in (b) of Lemma 6.2 that

conjugate fields correspond to conjugate subgroups. This is analogous to the concept of the conjugate

of a subgroup H ≤ G in MA2202, which is defined to be a subgroup of the form gHg−1 for some

g ∈ G.
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Lemma 6.2. Suppose we have finite extensions F ⊆ K ⊆ L. Then, the following hold:

(a) Gal(L/K)≤ Gal(L/F)

(b) If σ ∈ Gal(L/F), then Gal(L/σK) = σ Gal(L/K)σ−1 in Gal(L/F)

We will see in Theorem 6.3 that we have certain equivalent statements. In particular, normal

subgroups are somehow related to normal extensions.

Theorem 6.3. Suppose we have fields F ⊆ K ⊆ L, where F ⊆ L is a Galois extension. Then,

the following conditions are equivalent:

(a) K = σK for all σ ∈ Gal(L/F), i.e. K equals all of its conjugates

(b) Gal(L/K)⊴Gal(L/F)

(c) F ⊆ K is a Galois extension

(d) F ⊆ K is a normal extension

Let us see an application of Theorem 6.3.

Example 6.6. Consider Q ⊆ L = Q
(

ω, 3
√

2
)

. Then, there exist automorphisms σ ,τ ∈ Gal(L/Q)

such that

σ (ω) = ω and σ

(
3
√

2
)
= ω

3
√

2 and τ (ω) = ω
2 and τ

(
3
√

2
)
=

3
√

2.

Label the roots of x3 −2 as

α1 =
3
√

2 α2 = ω
3
√

2 α3 = ω
2 3
√

2.

Consider the isomorphism Gal(L/Q) ∼= S3 given by the action of the automorphisms on the roots

α1,α2,α3. Then, we see that σ 7→ (123) and τ 7→ (23). Since these permutations generate S3, it

follows that σ and τ generate Gal(L/Q).

Recall the following diagram. Each such field K gives a subgroup Gal(L/K)⊆ Gal(L/Q). Moreover,

K1 ⊆ K2 ⊆ L implies Gal(L/K1)Gal(L/K2) .

Q

Q(ω) Q
(

3
√

2
)

Q
(

ω
3
√

2
)

Q
(

ω2 3
√

2
)

Q
(

ω, 3
√

2
)

In other words, larger fields correspond to smaller Galois groups. Then, we claim that for the fields

K in the in the diagram above, the map K 7→ Gal(L/K) yields the following diagram of subgroups of
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Gal(L/Q). This is precisely the Galois correspondence!

{e}

⟨σ⟩ ⟨τ⟩ ⟨σ2τ⟩ ⟨στ⟩

Gal(L/Q)

In this diagram, ⟨σ⟩ is the subgroup generated by σ . Thus, ⟨σ⟩ =
{

e,σ ,σ2} since σ has order 3.

Similarly, ⟨τ⟩ ,
〈
σ2τ

〉
,⟨στ⟩ are subgroups of order 2.

To see how these two diagrams are related, consider the case of Q(ω). We know that

|Gal(L/Q(ω))|= [L : Q(ω)] =
[
Q
(

ω,
3
√

2
)

: Q(ω)
]
=

[
Q
(

ω, 3
√

2
)

: Q
]

[Q(ω) : Q]
=

6
2
= 3.

Moreover, σ is the identity on Q(ω) since σ (ω) = ω . Thus, σ ∈ Gal(L/Q(ω)), and it follows easily

that Gal(L/Q(ω)) = ⟨σ⟩.

In Group Theory, normal subgroups are important as they lead to quotient groups. Recall that if

N ⊴G, then left cosets of N coincide with right cosets, and the set G/N consisting of all cosets of N

in G becomes a group under multiplication, the quotient group.

When Gal(L/K) ⊆ Gal(L/F) is normal, the second main theorem of this section explains how to

interpret the quotient group.

Theorem 6.4. Suppose we have extension fields F ⊆ K ⊆ L, where F ⊆ K and F ⊆ L are

Galois. Then, Gal(L/K)⊴Gal(L/F), and there exists a natural isomorphism of groups

Gal(L/F)Gal(L/K)∼= Gal(K/F) .

Example 6.7. Consider

Q⊆Q(ω)⊆ L =Q
(

ω,
3
√

2
)
.

Since Q ⊆ Q(ω) is Galois and Gal(L/Q(ω)) = ⟨σ⟩, where σ (ω) = ω and σ

(
3
√

2
)
= ω

3
√

2. Then

by Theorem 6.4,

Gal(Q(ω)/Q)∼= Gal(L/Q)/⟨σ⟩ .

Note that σ 7→ (123), so it follows that

Gal(L/Q)/⟨σ⟩ ∼= S3/A3 ∼= Z/2Z.
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6.3. The Fundamental Theorem of Galois Theory

We can now state the main result of this chapter, which describes precisely the relation between

subgroups and subfields. Recall that if we are given a finite extension F ⊆ L and a subgroup H ≤
Gal(L/F), then we have the fixed field

LH = {α ∈ L : σ (α) = α for all σ ∈ H} .

We now state the Fundamental Theorem of Galois Theory.

Theorem 6.5 (Fundamental Theorem of Galois Theory). Let F ⊆ L be a Galois extension.

Then, the following hold:

(i) For an intermediate field F ⊆ K ⊆ L, its Galois group Gal(L/K) ⊆ Gal(L/F) has fixed

field LGal(L/K) = K. Furthermore,

|Gal(L/K)|= [L : K] and |Gal(L/F) : Gal(L/K)] = [K : F ] .

(ii) For a subgroup H ≤ Gal(L/F), its fixed field F ⊆ LH ⊆ L has Galois group Gal(L/LH) =

H. Furthermore,

[L : LH ] = |H| and [LH : F ] = [Gal(L/F) : H] .

(iii) The maps between

intermediate fields F ⊆ K ⊆ L and subgroups H ⊆ Gal(L/F)

given by the reverse inclusions

K 7→ Gal(L/K) and H 7→ LH are inverses of each other.

Furthermore, if a subfield K corresponds to a subgroup H under these maps, then K is

Galois over F if and only if H ⊴Gal(L/F), and when this happens, there exists a natural

isomorphism

Gal(L/F)/H ∼= Gal(K/F) .

We now give two examples of the Galois correspondence.

Example 6.8. Consider the extension

Q⊆ L =Q
(

ω,
3
√

2
)
= e2πi/3.
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Recall that Gal(L/Q)∼= S3 has subgroups as follows:

{e}

⟨σ⟩ ⟨τ⟩ ⟨σ2τ⟩ ⟨στ⟩

Gal(L/Q)

where

σ (ω) = ω and σ

(
3
√

2
)
= ω

3
√

2 and τ (ω) = ω
2 and τ

(
3
√

2
)
=

3
√

2.

In fact, these are all the subgroups of Gal(L/Q). The corresponding fixed fields are as follows:

Q

Q(ω) Q
(

3
√

2
)

Q
(

ω
3
√

2
)

Q
(

ω2 3
√

2
)

Q
(

ω, 3
√

2
)

The key point is that by (iii) of the Fundamental Theorem of Galois Theory (Theorem 6.5), these are

all the subfields of L =Q
(

ω, 3
√

2
)

containing Q.

Here is a more complicated example (to be included, which comes from Example 7.3.4 of Cox’s

textbook and we will link to the relevant exercise).

Example 6.9. Let f (x) ∈Q [x] be an irreducible polynomial and L be the splitting field of f (x) over

Q. Show that

if Gal(L/Q)∼=C3 then all the roots of f (x) are real.

Solution. We have either Gal(L |Q) = Z/3Z or Gal(L |Q) = S3, depending on whether there is an

automorphism swapping two roots. In our case, there is no automorphism swapping two roots since a

cyclic group of order 3 has no subgroup of order 2. If f has a root z ∈ C, then z would also be a root

and z 7→ z would be an automorphism. As such, no automorphism z 7→ z can exist, implying all roots

of f must be real. □

Example 6.10. Let g(x) be an irreducible quartic polynomial in Q[x] with Galois Group G. Show

that if g(x) has two real roots, then G ∼= S4 or G ∼= D8.
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Solution. Since deg(g) = 4, then G admits one of the following possibilities: Z4,V4,D8,A4,S4. As g

has two real roots, then it has two complex roots that occur in conjugate pairs because g ∈Q [x]. Since

complex conjugate roots are equivalent to the conjugation of a transposition, and the only transitive

subgroups containing a transposition are D8 and S4, we are done. □

We then give an interesting application of the Galois correspondence.

Proposition 6.4. Let F ⊆ L be a finite separable extension. Then, there exist only finitely

many intermediate fields K such that F ⊆ K ⊆ L.

In contrast, there are finite purely inseparable extensions that have infinitely many intermediate

fields. We provide a classic example.

Example 6.11. Let k be a field of characteristic p, and consider the extension

F = k (t,u)⊆ L.

Here, L is the splitting field of (xp − t)(xp −u) ∈ F [x]. Recall that this extension has no primitve

element. Moroever, F ⊆ L is purely inseparable and L = F (α,β ), where α p = t and β p = u.

Also, the intermediate fields

F ⊆ F (α +λβ )⊆ L are all distinct as λ ranges over the distinct elements of F.

Note that F is infinite. So, there exist many intermediate fields. Gal(L/F) is trivial, which implies it

has only one subgroup {e}, yet F ⊆ L has infinitely many intermediate fields.

The Galois correspondence has a nice application to the discriminant. Recall that we defined the

discriminant ∆( f ) ∈ F of a non-constant monic polynomial f ∈ F [x]. We showed that if deg( f ) = n,

where n ≥ 2, and

f =
n

∏
i=1

(x−αi) in a splitting field L of f then ∆( f ) = ∏
i< j

(
αi −α j

)2 ∈ F.

Recall that by Proposition 4.3,

f is separable if and only if ∆( f ) ̸= 0.

We define √
∆( f ) = ∏

i< j

(
αi −α j

)
∈ L.

Note that while ∆( f ) is uniquely determined by f , the above square root depends on how the roots

are labelled. Also, recall when we introduced Galois groups, if f ∈ F [x] is separable, then the action

of the Galois group on the roots α1, . . . ,αn of f gives an injective group homomorphism

Gal(L/F) ↪→ Sn.

In Sn, we also have the alternating group An ≤ Sn. We give the following result that
√

∆( f ) controls

the relation between An and Gal(L/F).
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Theorem 6.6. Let f ∈ F [x] be of degree n ≥ 2 and f = (x−α1) . . .(x−αn) in a splitting field

L of f . Assume char(F) ̸= 2. Then, the following hold:

(a) If σ ∈ Gal(L/F) corresponds to τ ∈ Sn, then

σ

(√
∆( f )

)
= sgn(τ)

√
∆( f )

(b) The image of Gal(L/F) lies in An if and only if
√

∆( f ) ∈ F

As such, we are able to compute the Galois group of an irreducible cubic.

Proposition 6.5 (Galois group of irreducible separable cubic). Let f ∈ F [x] be a monic

irreducible separable cubic, where char(F) ̸= 2. If L is the splitting field of f over F , then

Gal(L/F)∼=

Z/3Z if ∆( f ) is a square in F ;

S3 otherwise.

Example 6.12. Consider

f = x3 + x2 −2x−1 ∈Q [x] which is irreducible over Q.

As such, f is separable since char(Q) = 0 ̸= 2. Since Delta( f ) = 49 = 72, it follows that the Galois

group of f over Q is cyclic of order 3, i.e. the group is isomorphic to Z/3Z.

We have a more general case of Proposition 6.5, which is when the cubic is just irreducible over F .

Proposition 6.6 (Galois group of irreducible cubic). The Galois group of an irreducible cubic

∈Q [x] is isomorphic to S3 or Z3.

Proof. Let G denote the Galois group. Since the cubic polynomial is irreducible over Q, we consider

a field extension of degree n, where 2 ≤ n ≤ 6. By the tower theorem, n | 6 so n = 2,3 or 6. We

consider two cases.

• Case 1: If n = 3, then G ∼= Z3

• Case 2: If n = 6, then G ∼= S3 or Z6. For G to be isomorphic to Z6, G would need to have an

element of order 6 but it cannot have elements of order greater than 3. Therefore, G can only be

isomorphic to S3

Lastly, we show that n ̸= 2. If n = 2, then the degree of the field extension is 2, so one of the roots is

the root of a quadratic, but then the cubic would not be irreducible!
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7. Solvability by Radicals

7.1. Solvable Groups

In this chapter, we will used the Galois theory that was previously developed to determine when a

polynomial equation can be solved by radicals. The idea is to translate the problem into Group Theory.

As such, we begin with the group-theoretic concept of a solvable group (Definition 7.1), which might

have been covered in MA2202.

Definition 7.1 (solvable group). A finite group G is solvable if there exist subgroups

{e}= Gn ⊆ Gn−1 ⊆ . . .⊆ G1 ⊆ G0 = G

where for all 1 ≤ i ≤ n, we have

Gi ⊴Gi−1 and [Gi−1 : Gi] is prime.

In the second part of Definition 7.1, since Gi ⊴Gi−1, recall from MA2202 that this is equivalent to

saying that Gi−1/Gi is a cyclic group of prime order. Eventually, we will provide a result (Proposition

7.2) that every finite Abelian group is solvable. We now give an example of a non-Abelian solvable

group.

Example 7.1. Consider the inclusions

{e} ⊆ A3 ⊆ S3.

We have {e}⊴A3 trivially and A3 ⊴ S3 by definition of the alternating group. Moreover, as |A3| = 3

and |S3|= 6, it follows that

[A3 : {e}] = 3 and [S3 : A3] = 2 are prime.

In fact, we will see that A4 and S4 is solvable but An and Sn are non-solvable for n ≥ 5. Here is our

first result on solvability.

Proposition 7.1. Every subgroup of a solvable finite group is solvable.

Here is one of the main theoretical tools for dealing with solvable groups.

Theorem 7.1. Let G be a finite group and H ⊴G. Then,

G is solvable if and only if H and G/H are.

Proposition 7.2. Every finite Abelian group G is solvable.
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Proof. Recall that the subgroup of any Abelian Group G is normal. Thus, {e}⊴G. Now, we need

to show that G/{e} ∼= G, which follows from the first isomorphism theorem for groups. In fact,

G/{e}= G.

The definition of solvability is related to the ideas of simple groups, composition series, and the

Jordan–Hölder theorem. We will say more about these topics in due course (still the same chapter).

However, some standard results used to study solvable groups need to be mentioned here.

In some cases, the solvability of a group is determined by its order. For example, there is a result

which states that

if p is prime then every group of order pn is solvable, where n ≥ 0.

In fact, Burnside generalised the above-mentioned result in 1904.

Theorem 7.2 (Burnside’s theorem). If p and q are distinct primes, then every group of order

pnqm is solvable, where n,m ≥ 0.

In 1963, Feit and Thompson proved the following surprising result (Theorem 7.3). Although it is a

simple statement, the proof uses some sophisticated Mathematics and comprises 255 pages.

Theorem 7.3 (Feit-Thompson theorem). Every group of odd order is solvable.

The Sylow theorems also imply some nice results about solvability. These were mainly discussed

in MA2202 so we will not state them here (remember to add Examples 8.1.10 and 8.1.11 from Cox’s

book to the MA2202 notes).

7.2. Radical and Solvable Extensions

We then introduce the Field Theory needed to study solvability by radicals. The naive idea of

solvability by radicals arises from polynomials such as x3 +3x+1, whose unique root is

3

√
1
2

(
−1+

√
5
)
+

3

√
1
2

(
−1−

√
5
)

by Cardano’s formula.

This algebraic number is built by taking successive radicals. When we cast this in terms of fields, we

are led to the following definition on what it means for a field extension to be radical.

Definition 7.2 (radical extension). A field extension F ⊆ L is radical if there exist fields

F = F0 ⊆ F1 ⊆ . . .⊆ Fn−1 ⊆ Fn = L,

where for 1 ≤ i ≤ n, there is γi ∈ F with Fi = Fi−1 (γi) and γ
mi
i ∈ Fi−1 and mi > 0.
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Observe that if we let bi = γ
mi
i ∈ Fi−1, then γi is an mth root of bi, i.e. γi =

mi
√

bi, so that

Fi = Fi−1

(
mi
√

bi

)
where bi ∈ Fi−1.

This shows that radical extensions are obtained by adjoining successive radicals. We now provide our

first example of a radical extension.

Example 7.2. Consider the field extension

Q⊆Q
(√

2+
√

2
)
.

Let γ1 =
√

2 and γ2 =
√

2+
√

2. Then, we obtain the extension

Q⊆Q(γ1) =Q
(√

2
)
⊆Q

(√
2
)
(γ2) =Q

(√
2
)(√

2+
√

2
)
.

Here,

γ
2
1 =

√
2

2
= 2 ∈Q and γ

2
2 =

(√
2+

√
2
)2

= 2+
√

2 ∈Q
(√

2
)
.

One can easily verify that Q
(√

2
)(√

2+
√

2
)
= Q

(√
2+

√
2
)

, which implies that the extension

Q⊆Q
(√

2+
√

2
)

is a radical extension.

An important observation is that some extensions are not radical but contained in larger radical

extensions. Here is an example.

Example 7.3. Let Q ⊆ L be a splitting field of f = x3 + x2 − 2x− 1 ∈ Q [x]. In Example 6.12, we

mentioned that f is irreducible over Q with discriminant ∆( f ) = 49 = 72 > 0. As such, the roots of f

are real, which allows us to assume that L ⊆ R.

Furthermore, since ∆( f ) is a perfect square, then Q ⊆ L is a Galois extension of degree 3, i.e. the

Galois group Gal(L/Q) is isomorphic to Z/3Z. By Cardano’s formula, Q ⊆ L is contained in a

radical extension.

However, the extension Q ⊆ L is not radical. Suppose on the contrary that Q ⊆ L is radical. Then,

[L : Q] = 3 would imply that L = Q(γ), where γm ∈ Q for some m ≥ 3. As such, the minimal

polynomial f of γ over Q would divide xm − γm and have degree [L : Q] = 3. Since Q⊆ L is Galois,

then f would split completely over Q(γ) so that three of γ,ζmγ,ζ 2
mγ, . . . ,ζ m−1

m γ would lie in L.

However, this is impossible as L ⊆ R, reaching a contradiction.

This example motivates the following definition.

Definition 7.3 (solvable extension). A field extension F ⊆ L ois solvable (or solvable by

radicals) if there exists a field extension L ⊆ M such that F ⊆ M is radical.
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Example 7.4. The extension Q⊆ L considered in Example 7.3 is solvable since it is contained in a

radical extension.

Next, to understand radical and solvable extensions, we need to define the compositum of two or

more subfields.

Definition 7.4 (compositum of subfields). Suppose we have a field L and two subfields K1 ⊆ L

and K2 ⊆ L. Then, the compositum of K1 and K2 in L is the smallest subfield of L containing K1

and K2. We denote the compostium by K1K2.

In fact, the compositum always exists;

the compositum of K1 = F (α1, . . . ,αn) and K2 = F (β1, . . . ,βm) is K1K2 = F (α1, . . . ,αn,β1, . . . ,m ) .

Example 7.5. The compositum of Q
(√

2
)

and Q
(√

3
)

in R is Q
(√

2,
√

3
)

.

Proposition 7.3. Suppose F ⊆ L ⊆ M, where F ⊆ M is Galois. Then, the compositum of all

conjugate fields of L in M is the Galois closure of F ⊆ L.

Lemma 7.1. The following hold:

(a) If F ⊆ L and L ⊆ M, then so is F ⊆ M

(b) If F ⊆ K1 ⊆ L and F ⊆ K2 ⊆ L such that F ⊆ K1 is radical, then K2 ⊆ K1K2 is radical

(c) If F ⊆ K1 ⊆ L and F ⊆ K2 ⊆ L such that F ⊆ K1 and F ⊆ K2 are radical, then F ⊆ K1K2

is radical

Theorem 7.4. If an extension F ⊆ L is separable and radical, then its Galois closure is radical.

Corollary 7.1. If a finite extension F ⊆ L of characteristic 0 is solvable, then so is its Galois

closure.

7.3. Solvable Groups and Solvable Extensions

When is a finite extension F ⊆ L solvable? Because of subtleties that can occur in characteristic p,

we will make the following simplifying assumption:

all fields appearing in this section will have characteristic 0.

Given a positive integer m and a field L of characteristic 0, consider the splitting field of xm − 1

over L. This polynomial has m distinct roots in its splitting field. These roots form a group under

multiplication, which is cyclic. A generator ζ of this group has the following two properties:

(a) The m distinct roots of xm −1 are 1,ζ , . . . ,ζ m−1

(b) The splitting field of x−1 over L is L
(
1,ζ , . . . ,ζ m−1)= L(ζ )
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We call ζ a primitive mth root of unity in this situation. It is known that

L ⊆ L(ζ ) is Galois and Gal(L(ζ )/L) is Abelian.

To prove this, note that L ⊆ L(ζ ) is Galois since L(ζ ) is the splitting field of the separable polynomial

xm − 1 ∈ L [x]. Now, suppose σ ,τ ∈ Gal(L(ζ )/L). Then, σ ,τ are determined by their values on ζ .

Since the roots of xm −1 are 1,ζ , . . . ,ζ m−1, it follows that

σ (ζ ) = ζ
i and τ (ζ ) = ζ

j for i, j ∈ Z.

As such,

στ (ζ ) = σ
(
ζ

j)= (σ (ζ )) j =
(
ζ

i) j
= ζ

i j.

A similar computation yields τσ (ζ ) = ζ i j. Since στ = τσ are uniquely determined by their values

on ζ , then στ = τσ , which implies Gal(L(ζ )/L) is Abelian.

Given a Galois extension F ⊆ L and a primitive mth root of unity ζ , we obtain the following extension:

L

L(ζ )

F(ζ )

F

We can relate the solvability of the various Galois groups as follows:

Lemma 7.2. Let F ⊆ L be a Galois extension and ζ is a primitive mth root of unity. Then,

F ⊆ L(ζ ) and F (ζ )⊆ L(ζ ) are also Galois, and

Gal(L/F) is solvable if and only if Gal(L(ζ )/F) is solvable

if and only if Gal(L(ζ )/F (ζ )) is solvable

The following result will play a crucial role in our analysis of solvable extensions.

Lemma 7.3. Suppose K ⊆M is a Galois extension with Gal(M/K)∼=Z/pZ, where p is prime.

If K contains a primitive pth root of unity ζ , then there exists α ∈ M such that M = K (α) and

α p ∈ K.

Previously, we mentioned that if F ⊆ L is solvable, then we can find an extension L ⊆ M such that

F ⊆ M is Galois and solvable. For an arbitrary Galois extension, the wonderful fact is that the Galois

group determines whether or not the extension is solvable. The following theorem due to Galois is

one of the most important applications of Galois theory.
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Theorem 7.5. Let F ⊆ L be a Galois extension. Then,

F ⊆ L is a solvable extension if and only if Gal(L/F) is a solvable group.

7.4. A Word on Simple Groups and the Jordan–Hölder Theorem

Here is the key definition of this section.

Definition 7.5 (simple group). A group G is simple if and only if its normal subgroups are

{e} and G.

Some simple groups are easy to find.

Example 7.6. If p is prime, then Lagrange’s theorem implies that the cyclic group Z/pZ is simple.

In fact, these are the only non-trivial Abelian finite simple groups.

Here is a more interesting example.

Example 7.7. The alternating group An is simple for n ≥ 5.

We next observe that non-Abelian finite simple groups are not solvable.

Lemma 7.4. Let G be a non-Abelian finite simple group. Then, G is not solvable.

Proof. Suppose on the contrary that G is solvable. Then, we can find a normal subgroup G1 ⊴G

such that [G : G1] is prime. Since G is simple, we must have G1 = {e}, which implies G1 ̸= G. By

Lagrange’s theorem, we have

|G|= [G : G1] |G1|= [G : G1] |{e}|= [G : G1] ,

which implies G has prime order. Recall that in MA2202, if G is of prime order, then it must be cyclic

and hence, Abelian. However, we mentioned that G is non-Abelian, which is a contradiction.

As such, we infer that the following theorem hold:

Theorem 7.6. An and Sn are solvable if and only if n ≤ 4.

We will only prove special cases of Theorem 7.6 in Theorems 7.7 and 7.8, i.e. show that S3 and S4

are solvable.

Theorem 7.7. S3 is solvable.

Proof. Note that {e} ⊆ A3 ⊆ S3. We will justify that A3⊴S3, and S3/A3 is Abelian. The first property

is obvious; for the second property, we use the first isomorphism theorem to indirectly derive a

stronger result. Consider the homomorphism φ : S3 → Z2, where

φ((1)) = 0 ≡ 0 (mod2) and φ((23)) = 1 ≡ 1 (mod2).
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So, We leave it to the reader to check for the four remaining permutations. kerφ consists of elements

in S3 that map to the identity in Z2, which is 0. So, we need to find the permutations in S3 that

are mapped to 0 modulo 2 (i.e. even permutations), which are (1),(123) and (132). These are even

permutations, so it is clear that kerφ = A3. Lastly, recall that Z2 is the group of integers under addition

modulo 2, which is obviously Abelian. We conclude that S3 is solvable.

Theorem 7.8. S4 is solvable.

Proof. We see that V ⊴A4 and A4 ⊴S4. Also, it is obvious that {e}⊴V . Thus, |S4/|A4|= 24/12 = 2,

which is prime. By Lagrange’s theorem, |S4/|A4| is cyclic and thus Abelian. Similarly, |A4/V | =
12/4 = 3 so A4/V is cyclic and thus, Abelian. So, S4 is solvable.

In fact, it follows from Theorems 7.7 and 7.8 that A3 and A4 are also solvable. For later purposes,

we determine the normal subgroups of Sn.

Proposition 7.4. If n ≥ 5 and H ⊴Sn, then either

H = {e} or H = An or H = Sn.

The relationship between simple groups and solvable groups is more interesting than just simply

mentioning that every non-Abelian finite simple group G is not solvable (Lemma 7.4). The key

observation is that groups are built out of simple groups by means of what are called composition

series.

Recall Definition 7.1 where we mentioned that a group G is solvable if we can find subgroups

{e}= Gn ⊆ Gn−1 ⊆ . . .⊆ G1 ⊆ G0 = G

such that Gi ⊴Gi−1 and [Gi−1 : Gi] is prime for all 1 ≤ i ≤ n. This implies that the quotient Gi−1/Gi

is simple.

More generally, if G is a finite group, then a composition series of G comprises subgroups

Gn,Gn−1 . . . ,G1,G0 such that Gi⊴Gi−1 and the quotient Gi−1/Gi is simple for all i. We call Gi−1/Gi

the composition factors of G.

Example 7.8. Let n ≥ 5. Since An is simple by Example 7.7, a composition series of Sn is

{e} ⊆ An ⊆ Sn.

The composition factors are An/{e} ∼= An and Sn/An ∼= Z/2Z.

It is straightforward that any finite group has a composition series (proven in Example 7.9).

However, a given group may have more than one composition series. For example, the cyclic group
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Z/6Z= ⟨1⟩ has the composition series

{e} ⊆ ⟨2⟩ ⊆ Z/6Z and {e} ⊆ ⟨3⟩ ⊆ Z/6Z.

The factors of the first composition series are Z/2Z and Z/3Z, while the factors for the second are

Z/3Z and Z/2Z. The Jordan–Hölder theorem asserts that any two composition series of a given

group have the same length and that the corresponding composition factors can be permuted so that

they become isomorphic. Hence, the composition factors of a group are the simple groups from which

the group is built (some explanation is required here but we will not explain).

Example 7.9 (Cox p. 215 Question 6). Let G be a finite group.

(a) Among all normal subgroups of G different from G itself, pick one of maximal order and call it

H. Prove that G/H is a simple group.

(b) Use (a) and induction on |G| to prove that G has a composition series.

Solution.

(a) We shall argue by contradiction. Suppose there exists N such that N ⊴G/H. Then,

(aH)(nH)(aH)−1 ∈ G/H for all aH ∈ G/H and nH ∈ N.

Note that aH ∈ G/H is equivalent to saying that a ∈ G. Also, the expression

(aH)(nH)(aH)−1 =
(
ana−1)H.

This shows that ana−1 = n since N ⊴G by assumption. Thus,

Z (G) = {n ∈ G : nH ∈ G/N} .

This implies H ⊆ N. However, H was chosen to be the largest normal subgroup of G, which

leads to a contradiction. As such, G/H is simple.

(b) Suppose |G| = n. Let P(n) denote the proposition that G has a composition series. The base

case is obviously true as the composition series only comprises the trivial group {e}.

Assume that for all k < n, the proposition holds. Then, for the case when |G| = n, let H be

a normal subgroup G different from G itself, say H, where H is of maximal order. By the

inductive hypothesis, H has the following composition series:

{e}= Gn ⊆ . . .⊆ H.

By (a), G/H is simple, so

{e}= Gn ⊆ . . .⊆ H ⊆ G

is a composition series.
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7.5. Solving Polynomials by Radicals

The problem of solving a polynomial equation for its zeros can be transformed into a problem

regarding field extensions. At the same time, we can use the Fundamental Theorem of Galois Theory

to transform a problem about field extensions into a problem about groups. This is how Galois showed

that there are fifth-degree polynomials that cannot be solved by radicals.

We will assume that all fields appearing in this section will have characteristic zero. So far, our

discussion of solvability by radicals has focused on field extensions. We now shift our attention to

polynomials and their roots.

Definition 7.6 (solvability by radicals). Let f ∈F [x] be non-constant with splitting field F ⊆L.

(a) A root α ∈ L of f is expressible by radicals over F if α lies in some radical extension of

F .

(b) The polynomial f is solvable by radicals over F if F ⊆ L is a solvable extension.

Example 7.10. Let

ω = e2πi/8 =

√
2

2
+ i

(√
2

2

)
.

Then, x8 −3 splits over Q
(
ω, 3

√
8
)
, where ω8 ∈Q and

( 3
√

8
)8 ∈Q⊆Q(ω). Thus, x8 −3 is solvable

by radicals over Q. Although the zeros of x8 − 3 are written in the form r,rω,rω2, . . . ,rω7, where

r = 3
√

8, the notion of solvable by radicals is best illustrated by writing them in the form

±r,±ir,±r

(√
2

2
+ i

√
2

2

)
,±r

(√
2

2
− i

√
2

2

)
.

In fact, we also could have considered the chain of extensions

Q⊆Q
(

3
√

8
)
⊆Q

(
3
√

8,ω
)
.

Note that these extensions are radical since 3
√

8 is the cube root of a rational number. Also, cyclotomic

extensions like Q
(

e2πi/8
)

are radical as the minimal polynomial of a root of unity over Q is reducible

into factors over extensions by successive roots of unity.

By the definition of solvability by radicals (Definition 7.6), if a non-constant polynomial in F [x]

is solvable by radicals, then all of its roots are expressible by radicals. However, for an irreducible

polynomial, it turns out that solvability by radicals is satisfied as soon as one root is expressible by

radicals. Here is the precise result.

Proposition 7.5. Let f ∈ F [x] be irreducible. Then, f is solvable by radicals over F if and

only if f has a root expressible by radicals over F .
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Theorem 7.9. A polynomial f ∈ F [x] is solvable by radicals over F if and only if the Galois

group of f over F is solvable.

We can apply this to polynomials of low degree as follows.

Proposition 7.6. If f ∈ F [x] has degree n ≤ 4, then f is solvable by radicals.

Once we get to degree 5, a different picture emerges.

Example 7.11. Consider the quintic polynomial f = x5−6x+3, which has S5 as Galois group over

Q. However, S5 is not solvable, so f is not solvable by radicals over Q. Furthermore, f is irreducible

by Eisenstein’s criterion (set p = 3) so it follows that no root of f is expressible by radicals over Q.

This example requires that we revise how we think about the roots of a polynomial. Most students

come into a course on Galois theory thinking that the roots of a polynomial f ∈Q [x] are numbers like

√
2+

√
3
√

2+
√

2 7
√

12+7i . . .

Historically, the word ‘root’ came to refer to a solution of f (x) = 0 because of the intuition that roots

are built from radicals. However, we saw in Example 7.11 that this intuition is wrong — roots of

polynomials are intrinsically more complicated than just radicals.

Theorem 7.10. Let H be a subgroup of S5 that contains a 5-cycle and a 2-cycle. Then, H = S5.

Proof. Let

σ = (12345) and τ = (1,2) .

Then,

στσ
−1 = (12345)(12)(54321) = (23)

σ
2
τσ

−2 = (34)

σ
3
τσ

−3 = (45)

σ
4
τσ

−4 = (51)

Since every permutation is a product of transpositions and every transposition can be generated by σ

and τ , then the result follows.

Here is another example of a polynomial ∈ Z [x] but not solvable by radicals over Q.

Example 7.12. Let

g(x) = 3x5 −15x+5.

By Eisenstein’s criterion, choosing p = 5 implies g(x) is irreducible over Q.



MA4203 Page 80 of 98

Using techniques in Real Analysis, g(x) is continuous and g(−2) = −61 and g(−1) = 17. By the

intermediate value theorem, there exists c ∈ (−2,−1) such that g(c) = 0. A similar argument shows

that g(x) has real zeros between 0 and 1 and between 1 and 2.

−2 −1.5 −1 −0.5 0.5 1 1.5 2

−40

−20

20

40

x

y

Each of these zeros has multiplicity 1. Furthermore, g(x) has no more than three real zeros because

Rolle’s theorem asserts that between each pair of real zeros of g(x), there must be a zero of

g′ (x) = 15x4 − 15. So, for g(x) to have four real zeros, g′ (x) would need to have three real zeros,

but it does not. Thus, the two other zeros of g(x) are complex, say a+bi and a−bi (conjugate roots

occur by the conjugate root theorem).

Denote the five zeros of g(x) by a1, . . . ,a5. Since any automorphism of K = Q(a1, . . . ,a5) is

completely determined by its action on the ai’s and must permute the ai’s, then Gal(K/Q) ≤ S5.

Since a1 is a zero of an irreducible polynomial of degree 5 over Q, then [Q(a1) : Q] = 5, so by the

tower theorem, 5 divides [K : Q]. (i) of The Fundamental Theorem of Galois Theory (Theorem 6.5)

asserts that 5 | |Gal(K/Q)|. By Lagrange’s theorem, Gal(K/Q) has an element of order 5.

Since the only elements of order 5 are the 5-cyles, then Gal(K/Q) contains a 5-cycle. Next, consider

the map

σ : C→ C where σ : a+bi 7→ a−bi (essentially conjugation map).

σ fixes the three real zeros and interchanges the two complex zeros of g(x) so Gal(K/Q) contains

a 2-cycle. However, by Theorem 7.10, the only subgroup of S5 that contains both a 5-cycle and a

2-cycle is S5. So, Gal(K/Q) ∼= S5. Since S5 is not solvable, then we have exhibited a polynomial of

degree five that is not solvable by radicals.
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8. Cyclotomic Extensions

8.1. Cyclotomic Polynomials

In this chapter, we will explore the Galois theory of cyclotomic extensions, which are extensions

of the form Q ⊆ Q(ζn), where ζn = e2πi/n. This involves the study of cyclotomic polynomials. In

the next chapter, we will apply such results to determine which regular polygons are constructible by

straightedge and compass.

As a prelude, note that if p is prime, then

Φp (x) = xp−1 + xp−2 + . . .+ x+1 is the minimal polynomial of ζp = e2πi/p over Q.

Now, we will describe the minimal polynomial of ζn = e2πi/n over Q, where n is now an arbitrary

integer ≥ 1. We will also compute the Galois group Gal(L/Q), where L = Q(ζn). One would need

some pre-requisite on Number Theory.

Definition 8.1 (Euler totient function). Let n ∈ Z+. Define the Euler totient function φ (n) to

be the number of integers i such that 0 ≤ i < n and gcd(i,n) = 1.

We can interpret φ (n) in terms of the ring Z/nZ. The invertible elements of this ring form the set

(Z/nZ)∗ = {[i] ∈ Z/nZ : [i] [ j] = 1 for some j ∈ Z/nZ} .

One sees that (Z/nZ)∗ is a group under multiplication. In fact, the group is of order φ (n) (Example

8.1).

Example 8.1 (Cox p. 236 Question 1). Prove that

a congruence class [i] ∈ Z/nZ has a multiplicative inverse if and only if gcd(i,n) = 1.

Conclude that (Z/nZ)∗ has order φ (n). Be sure you understand what happens when n = 1.

Solution. For the forward direction, suppose [i] ∈ Z/nZ has a multiplicative inverse, say [ j]. This

means that i j ≡ 1 (modn). In other words, there exists k ∈ Z such that i j− kn = 1. By the converse

of Bézout’s lemma, gcd(i,n) = 1.

As for the reverse direction, we use Bézout’s lemma to deduce that

there exist x,y ∈ Z such that xi+ yn = 1.

Considering both sides of the equation modulo n, we have xi ≡ 1 (modn), so it follows that [x] is the

multiplicative inverse of [i].

Since φ (n) counts the number of i < n such that gcd(i,n) = 1, it follows that
∣∣(Z/nZ)∗

∣∣ = φ (n).
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When n = 1, the ring Z/1Z contains only one element, namely [0]. The congruence class [0] does not

have a multiplicative inverse, as there is no j such that 0 · j ≡ 1 (mod 1). Hence, the group (Z/1Z)∗

is the trivial group, and its order is 0, which is consistent with φ (1) = 1. □

Our first lemma gives the basic properties of the φ -function (should have been covered in MA3265).

Lemma 8.1. Let φ denote the Euler totient function.

(a) Multiplicativity: If gcd(m,n) = 1, then φ (mn) = φ (m)φ (n)

(b) If n > 1 is an integer, then

φ (n) = n∏
p|n

(
1− 1

p

)

Lemma 8.2 (Fermat’s little theorem). If p is prime, then ap ≡ a (mod p) for all a ∈ Z.

Our next task is to define the cyclotomic polynomial Φn (x) for n ≥ 1; in fact, it has integer

coefficients. We begin with the factorisation

xn −1 = ∏
0≤i<n

(
x−ζ

i
n
)
.

Then, we define the nth cyclotomic polynomial Φn (x) as follows:

Definition 8.2 (cyclotomic polynomial). The nth cyclotomic polynomial Φn (x) is defined to

be the product

Φn (x) = ∏
0≤i<n

gcd(i,n)=1

(
x−ζ

i
n
)
.

We see that the roots of Φn (x) are ζ i
n for those 0 ≤ i < n relatively prime to n. It follows that the

degree of the polynomial Φn (x) is φ (n). As such,

φ (n) = deg(Φn (x)) =
∣∣(Z/nZ)∗

∣∣ .
This link between Φn (x) and (Z/nZ)∗ will be used to determine the Galois group Gal(Q(ζn)/Q).

Previously, we defined a root of xn −1 to be a primitive nth root of unity if its powers give all roots of

xn−1 (recall the concept of the generator of a cyclic group in MA2202). In our situation, the primitive

nth roots of unity are ζ i
n for 0 ≤ i < n and gcd(i,n) = 1. Thus,

the roots of Φn (x) are the primitive nth roots of unity in C.

We now provide some examples of cyclotomic polynomials.
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Example 8.2. When n = 2, the only primitive square root of unity is −1 so that Φ2 (x) = x+1; when

n = 4, the primitive fourth roots of unity are i and i3 =−1 so that

Φ4 (x) = (x− i)(x+ i) = x2 +1.

Since Φ−1(x) = x−1, we obtain the factorisation

x4 −1 = (x−1)(x+1)
(
x2 +1

)
= Φ1 (x)Φ2 (x)Φ4 (x) .

In general, xn −1 has a similar factorisation.

Example 8.3 (pth cyclotomic polynomial). Let p be a prime. Since 1, . . . , p−1 are relatively prime

to p, or equivalently gcd(i, p) = 1 for all i < p, it follows that

Φp (x) =
p−1

∏
i=1

(
x−ζ

i
p
)
=

xp −1
x−1

.

Proposition 8.1. Φn (x) is a monic polynomial with integer coefficients and has degree φ (n).

Moreover, these polynomials satisfy the identity

xn −1 = ∏
d|n

Φd (x) .

Example 8.4. The identity

xp −1 = Φ1 (x)Φp (x)

seems like a boring application of Proposition 8.1. To spice things up a little, we have

xp2
−1 = Φ1 (x)Φp (x)Φp2 (x) .

It follows that xp2 −1 = (xp −1)Φp2 (x).

Remark 8.1. In the examples of cyclotomic polynomials given so far, the coefficients are

always 0 or ±1. This is true for all n < 105, i.e. the pattern breaks for n ≥ 105.

We are now in position to discuss the Galois group of a cyclotomic extension. The first step in

computing Gal(Q(ζn)/Q) is to prove that Φn (x). We omit the proof here.

Theorem 8.1. The cyclotomic polynomial Φn (x) is irreducible over Q.

Corollary 8.1. [Q(ζn) : Q] = φ (n)

This makes it easy to compute the Galois group of a cyclotomic extension.
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Theorem 8.2. Let L =Q(ζn). There exists an isomorphism

Gal(L/Q)∼= (Z/nZ)∗ such that σ 7→ [ℓ]

if and only if σ (ζn) = ζ ℓ
n .

Example 8.5. Consider the field Q(ζ5), where ζ5 = e2πi/5. The roots of the polynomial x5 − 1

are ζ5,ζ
2
5 ,ζ

3
5 ,ζ

4
5 ,1. Excluding 1, the other four roots form a cyclic group under multiplication. An

element σ ∈ Gal(Q(ζ5)/Q) must permute the roots of x5 −1 in a way that preserves their algebraic

structure. In particular, σ (ζ5) must be another 5th root of unity, say ζ ℓ
5 , where gcd(ℓ,5) = 1. In fact,

there are precisely four choices for ℓ since 5 is prime.

On the other hand, the group (Z/5Z)∗ consists of the integers 1,2,3,4 modulo 5 since these integers

are coprime to 5 (implicitly mentioned earlier). Under multiplication modulo 5, they form a group.

Each σ ∈ Gal(Q(ζ5)/Q) corresponds to an element [ℓ] in (Z/5Z)∗. We can have either of the

following:

[ℓ] = 1 which corresponds to σ (ζ5) = ζ5 (identity map)

[ℓ] = 2 which corresponds to σ (ζ5) = ζ
2
5

[ℓ] = 3 which corresponds to σ (ζ5) = ζ
3
5

[ℓ] = 4 which corresponds to σ (ζ5) = ζ
4
5

The identity map case is quite boring. We first give an example of how the [ℓ] = 3 case works. For

any root ζ k
5 , where 1 ≤ k ≤ 4, we must be able to obtain it from the map σ (ζ5) = ζ 3

5 . We have

σ
(
ζ

2
5
)
= ζ5 and σ

(
ζ

3
5
)
= ζ

4
5 and σ

(
ζ

4
5
)
= ζ

2
5 .

See Figure 1 for a visual representation of how σ acts on the roots.

1

ζ5

ζ 2
5

ζ 3
5

ζ 4
5

Figure 1: Action of σ with [ℓ] = 3

We then consider the [ℓ] = 2 case. Again, we have σ (ζ5) = ζ 2
5 , so

σ
(
ζ

2
5
)
= ζ

4
5 and σ

(
ζ

3
5
)
= ζ5 and σ

(
ζ

4
5
)
= ζ

3
5 .
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1

ζ5

ζ 2
5

ζ 3
5

ζ 4
5

Figure 2: Action of σ with [ℓ] = 2

See Figure 2 for a visual representation of how σ acts on the roots.

Lastly, we consider the [ℓ] = 4 case. Again, we have σ (ζ5) = ζ 4
5 , so

σ
(
ζ

2
5
)
= ζ

3
5 and σ

(
ζ

3
5
)
= ζ

2
5 and σ

(
ζ

4
5
)
= ζ5.

See Figure 3 for a visual representation of how σ acts on the roots.

1

ζ5

ζ 2
5

ζ 3
5

ζ 4
5

Figure 3: Action of σ with [ℓ] = 4
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9. Geometric Constructions

9.1. Constructible Numbers

A straightedge is an unmarked ruler, whereas a compass is a device used to draw circular arcs. Using

a straightedge and a compass, we can produce points on a plane starting with two given points 0 and

1. We now carefully describe the points, lines, and circles that we can construct using straightedge

and compass starting from 0 and 1.

Postulate 9.1 (geometric construction postulates). C1 and C2 represent constructive postu-

lates that describe basic allowable constructions in geometry; P1, P2, and P3 are often called

intersection principles or incidence postulates. They allow the identification of points that satisfy

specific conditions.

• C1: From two points α and β , we can construct a line ℓ that passes through α and β

• C2: Given three points α,β ,γ , we can draw a circle C with centre γ whose radius is the

distance between α and β

• P1: The point of intersection of distinct lines ℓ1 and ℓ2

• P2: The points of intersection of a line ℓ and a circle

• P3: The points of intersection of two circles

α β

ℓ

γ C

r = |α −β |

Figure 4: C1: line through two points (left); C2: circle with centre and radius (right)

α1

β1

α2

β2

ℓ1

ℓ2

P

γ

C

ℓ

P1

P2

γ1

C1

γ2

C2

P1

P2

Figure 5: P1: intersection of two lines (left); P2: intersection of a line and a circle (middle); P3:
intersection of two circles (right)

We identify the plane as the geometric representation of C. Constructing a point on the plane will

mean constructing a complex number. As mentioned, we will start our construction from 0 and 1.
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Definition 9.1 (constructible number). We say that α ∈ C is constructible if there exists

a finite sequence of straightedge and compass constructions using C1,C2,P1,P2,P3

that begins with 0 and 1 and ends with α .

We provide some examples of constructible numbers.

Example 9.1 (constructing Z). From 0 and 1, we use C1 to construct a line passing through 0 and

1. This line can be extended indefinitely, so we obtain the x-axis. By considering C2, we construct the

circle of radius 1 centred at 1. This circle intersects the numbers 0 and 2, or to be explicit, (0,0) and

(2,0). By P2, 2 is constructible.

We have constructed 0,1,2 thus far. Iterating this shows that every n ∈ Z is constructible.

Example 9.2 (y-axis is constructible; Dummit and Foote p. 267 Question 1). In Example 9.1, we

constructed the x-axis. In a similar way, show that the y-axis is constructible. For each step in your

construction, be sure to say which of C1, C2, P1, P2 and P3 you are using.

Solution. From Example 9.1, it follows that −1,0,1 are constructible. By C2, we can construct the

following circles:

the one centred at −1 with radius 2 and the one centred at 1 with radius 2.

By simple high school geometry, we obtain the intersection points of these two circles by P3, which

are ±i
√

3. By C1, we can construct a line that passes through i
√

3 and −i
√

3. Iterating this (similar

to Example 9.1) shows that the y-axis is constructible. □

Example 9.3 (i ∈ C is constructible). In Example 9.2, we showed that the y-axis is constructible.

Using C2, we can draw a circle of radius 1 centred at 0. These intersect at ±i, which shows that i ∈C
is constructible.

Example 9.4 (ζn is constructible). Suppose we can construct a regular n-gon somewhere in the

place. Using two consecutive vertices and the centre of the n-gon, one is able to construct an isosceles

triangle with the angle at the centre being θ = 2π/n (Figure 6).

Figure 6
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The constructed triangle can be copied such that the angle θ is oriented anticlockwise from the

positive part of the x-axis (Figure 7). Intersecting this with the unit circle shows that the nth root

of unity ζn = e2πi/n is constructible. In fact, this process can be reversed.

Figure 7

We conclude that

ζn is constructible if and only if a regular n-gon can be constructed by straightedge and compass.

We will discuss a beautiful result in Theorem 9.5, known as the Gauss-Wantzel theorem, which

provides a criterion to determine those n’s for which this is possible.

The set of constructible numbers C has the following properties:

Theorem 9.1. Let

C = {a ∈ C : α is constructible} is a subfield of C.

(a) Let α = a+bi ∈ C, where a,b ∈ R. Then,

α ∈ C if and only if a,b ∈ C

(b) α ∈ C implies
√

α ∈ C

Example 9.5. ζ5 = e2πi/5 is given by the formula

ζ5 =
−1+

√
5

4
+

i
2

√
5+

√
5

2
.

Since C is closed under the operation of taking square roots, it follows easily that ζ5 is constructible.

Consequently, a regular polygon can be constructed by straightedge and compass.

We call C the field of constructible numbers. We next study the structure of C .

Theorem 9.2. Let α ∈ C. Then, α ∈ C if and only if there exists subfields

Q= F0 ⊆ F1 ⊆ . . .⊆ Fn−1 ⊆ Fn ⊆ C

such that α ∈ Fn and [Fi : Fi−1] = 2 for all 1 ≤ i ≤ n.
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Essentially, a vague description of the reverse direction of Theorem 9.2 is as follows: say Fi is a

quadratic extension of Fi−1 since the degree of each field extension is 2. Then, by constructing the

aforementioned chain with α ∈ C, it follows that α ∈ C , i.e. α is constructible.

Corollary 9.1. C is the smallest subfield of C that is closed under the operation of taking

square roots.

Corollary 9.2 (constructible number implies algebraic over Q). If α ∈ C , then

[Q(α) : Q] = 2m for some m ≥ 0.

Thus, every constructible number is algebraic over Q, and the degree of its minimal polynomial

over Q is a power of 2.

Example 9.6 (Cox p. 268 Question 5). In this exercise, you will give two proofs that ζ3 = e2πi/3 is

constructible.

(a) Give a direct geometric construction of ζ3 with each step justified by citing C1, C2, P1, P2, or

P3.

(b) Use Theorem 9.2 to show that ζ3 is constructible.

Solution.

(a) Consider the points 0 and 1. Using C2, we can construct a circle of radius 1 centred at 0, and

another circle of radius 1 centred at 1.

0 1

Using P3, define P to be the point of intersection of the two circles.

0 1

P
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Use C2 to construct a third circle of radius 1 centred at P. The reason why this circle is of radius

1 is because the distance from 0 to P is the same as the distance from 1 to P, which is 1.

0 1

P

Using P3, define Q to be the point of intersection with one of the first two circles and the newest

circle.

0 1

PQ

The smaller angle formed by the sides 0Q and 01 is 120◦.

0 1

PQ

120◦

(b) The extension Q ⊆ Q(ζ3) is of degree 2 since ζ3 satisfies the equation x2 + x+ 1, which is of

degree 2. By Theorem 9.2, the result follows.

Example 9.7 (Cox p. 273 Question 4). Prove that

(ζn)
n/m = ζm when m | n and m > 0.

Use this to conclude that if ζn is constructible and m | n, where m > 0, then ζm is constructible.
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Solution. Suppose m | n, where m > 0. Then, there exists d ∈ Z such that n = dm. So,

(ζn)
n/m = ζ

d
dm =

(
e2πi/dm

)d
= e2πi/m = ζm.

As such, ζm lies in the same field as ζn or a subfield of it. Recall that C is a subfield of C (Corollary

9.1). Since ζn is constructible, then ζm is constructible. □

Some of the most famous problems in Greek geometry are as follows:

trisection of the angle and duplication of the cube and squaring the circle

Example 9.8 (trisection of the angle). We know that every angle can be bisected using straightedge

and compass. However, this is not true for trisections, i.e. there exist angles that cannot be trisected by

straightedge and compass. For example, say that we can trisect a 120◦ angle. Since we can construct a

120◦ angle from 0 and 1 by straightedge and compass (Example 9.6), a trisection of this angle would

imply that we could construct a 40◦ angle from 0 and 1 by straightedge and compass. Intersecting this

with the unit circle centred at the origin, it follows that ζ9 is a constructible number since 40◦ = 2π/9.

We have the factorisation

x9 −1 = Φ1 (x)Φ3 (x)Φ9 (x) = (x−1)
(
x2 + x+1

)(
x6 + x3 +1

)
.

but one checks that x6 + x3 +1 is the minimal polynomial of ζ9. Since the degree of this polynomial

is not a power of 2, it follows that ζ9 is not constructible. As such, we cannot trisect 120◦ using

straightedge and compass.

Example 9.9 (Cox p. 268 Question 6). Show that it is impossible to trisect a 60◦ angle by

straightedge and compass.

Solution. Suppose on the contrary that it is possible to trisect. Then, we can construct a 20◦ angle

from 0 and 1 by straightedge and compass. Similar to Example 9.8, intersecting this with the unit

circle centred at the origin, it follows that ζ18 is a constructible number since 20◦ = 2π/18.

We have the factorisation

x18 −1 =
(
x9 +1

)(
x6 + x3 +1

)(
x2 + x+1

)
(x−1)

It is easy to check that x6−x3+1 is the minimal polynomial of ζ18. Since the degree of this polynomial

is not a power of 2, it follows that ζ18 is not constructible. The result follows. □

Example 9.10 (duplication of the cube). This is also known as the Delian problem. Say we are

given a cube and we wish to construct another with exactly twice the volume. We can pick our units

of measurement so that the given cube has edges of length 1. In these units, the volume is also 1,

which means that we need to construct a cube of volume 2. It follows that if we could duplicate the

cube, then we could construct a number s such that s3 = 2. Equivalently, s = 3
√

2. Furthermore, since
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the cube has edge length 1, we can assume that the construction begins with 0 and 1.

If duplication of the cube by straightegde and compass holds, then it would imply that s = 3
√

2 is

constructible. We will justify that this is not true by contraposition. Recall that x3 −2 is the minimal

polynomial of 3
√

2 over Q, for which the polynomial is of degree 3. So, 3
√

2 is not constructible. We

conclude that we cannot duplicate the cube by straightedge and compass.

Example 9.11 (squaring the circle). This involves constructing a square whose area is equal to that

of a given circle. Suppose the given circle has radius 1. Then, the circle has area π . Since a square

of area π has side
√

π , it follows that if we could square the circle, then we could construct
√

π .

Furthermore, since the circle has radius 1, we can assume that the construction begins with 0 and 1.

It follows that squaring the circle by straightedge and compass would imply that
√

π is constructible.

Recall that C is a field, so by a closure property, the constructibility of
√

π would imply that its

square, π , is also constructible. Recall Corollary 9.2. As π is claimed to be constructible, then it must

be algebraic over Q. However, a known result by Lindemann and Weierstrass (Lindemann-Weierstrass

theorem) asserts that π is transcendental over Q, resulting in a contradiction!

One would ask whether the converse of Corollary 9.2 is true, i.e. is it true that if α ∈ C is algebraic

over Q and the degree of its minimal polynomial is a power of 2, then α is constructible? Well, we

must have the degree of the splitting field L over Q to be some power of 2. We will state this result

now.

Theorem 9.3. Let α ∈ C be algebraic over Q, and let Q ⊆ L be the splitting field of the

minimal polynomial of α over Q. Then, α is constructible if and only if [L : Q] is a power of 2.

We continue our discussion with the quadratrix of Hippias. On pages 268 and 269 of Cox’s textbook,

Question 10 (of what we will be discussing) is left as an exercise for the reader. We will use this curve

to

square the circle and trisect the angle.

The quadratrix is defined to be the curve

y = xcot
(

πx
2

)
for 0 < x ≤ 1 (Figure 8).

A simple result in Calculus shows that

2
π
= lim

x→0+
xcot

(
πx
2

)
.

To see why, one needs to make use of the following limit:

lim
x→0+

tanx
x

= 1.
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x

y

Figure 8: Graph of y = xcot
(

πx
2

)
for 0 < x ≤ 1 with labeled point and angle θ

This means that the quadratrix meets the y-axis at y = 2/π . We will follow Hippias and include this

point on the curve.

Next, we claim that we can square the circle starting from 0 and 1 and constructing new points using

C1, C2, P1, P2 or P3, together with the intersections of constructible lines with the quadratrix. Note

that (2/π) i and i are constructible, and because C is a subfield of C, it follows that π is constructible.

By (b) of Theorem 9.1, it follows that
√

π is constructible.

Now, let r ∈Q+ be arbitrary. Consider a circle of radius r. Then,

as r,
√

π are constructible, by field closure properties we have πr2 also being constructible.

As such, squaring the circle is permitted with the quadratix!

We then discuss how the quadratix can be helpful with angle trisection. In Figure 8, consider a point

(a,b) on the quadratrix, which determines an angle θ . By some simple trigonometry,

sinθ =
a√

a2 +b2
=

a√
a2 +a2 cot2 (aπ/2)

since (a,b) satisfies y = xcot
(

πx
2

)
.

Using the Pythagorean identity 1+ cot2 θ = 1/sin2
θ , it follows that

sinθ = sin
(aπ

2

)
.

By injectivity, it follows that θ = aπ/2. For any angle 0 < θ < π/2, it follows that θ can be trisected

starting from 0, 1, and θ and constructing new points using C1, C2, P1, P2 or P3, together with the

intersections of constructible lines with the quadratic. By trisection, we mean that

if θ is constructible then
θ

3
is also constructible.

In general, thanks to the quadratrix, we can n-sect (not sure if this is an actual terminology) any angle

θ , i.e. divide it into n equally sized angles θ/n.

The spiral of Archimedes also possesses the same property.
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x

y

Figure 9: The Spiral of Archimedes r = θ and a unit circle

Definition 9.2 (field of Pythagorean numbers). Let P denote the set of real numbers that

can be obtained from 0, 1, and i by a sequence of straightedge-and-dividers constructions.

It is known that P is a subfield of R. A more interesting property of P is that

a,b ∈ P then
√

a2 +b2 ∈ P.

To see why, recall that the y-axis is constructible using 0, i and the straightedge (Example 9.2), so

that given b ∈ P , we can construct ib using our dividers. Combining this with a ∈ P , we obtain the

following diagram:

x

y

a

ib

Now, we use the dividers to transfer the line segment from a and ib to the positive x-axis, starting

from 0. Pythagoras’ theorem implies that
√

a2 +b2 ∈ P as claimed. In general, a subfield of R that

contains
√

a2 +b2 whenever it contains a and b is called Pythagorean (Definition 9.2). This is in fact

the smallest Pythagorean subfield of R.

Analogous to Theorem 9.3, we have the following result about P:

Theorem 9.4. Let α ∈ R be algebraic over Q, and let f be the minimal polynomial of α over

Q with splitting field L. Then, the following are equivalent:

(a) α ∈ P

(b) All roots of f are real, and α is constructible
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(c) All roots of f are real, and [L : Q] is a power of 2

In Definition 9.2, we defined the field P ⊆ R and what it means for a subfield F ⊆ R to be

Pythagorean. If α ∈ R, we have α ∈ P if and only if there is a sequence of fields

Q= F0 ⊆ . . .⊆ Fn ⊆ R

such that α ∈ Fn and for i = 1, . . . ,n, there are ai,bi ∈ Fi−1 such that Fi = Fi−1

(√
a2

i +b2
i

)
.

It follows that P is the smallest Pythagorean subfield of R.

9.2. Regular Polygons and Roots of Unity

It is of interest regarding which regular n-gons admit a straightedge and compass construction. Our

main tool will be the cyclotomic extension Q ⊆ Q(ζn) that was discussed in the previous chapter.

Before we delve into the main result, we need to make use of the following terminology:

Definition 9.3 (Fermat prime). An odd prime p is

a Fermat prime if p = 22m
+1 for some m ∈ Z≥0.

Example 9.12 (Cox p. 274 Question 7). The Fermat primes are 3,5,17,257,65537, which

correspond to m = 1, . . . ,4 respectively. It is conjectured that there are only 5 of them.

Although Fn commonly denotes the Fibonacci sequence, we will use Fn to denote the sequence of

Fermat numbers (Fermat primes form a subset of this).

Example 9.13 (Cox p. 274 Question 8). Use

log10 (F33)≈ 233 log10 (2) to estimate the number of digits in the decimal expansion of F33.

Then, do the same for F2478782.

Solution. We motivate our discussion with a known Fermat prime F4. Recall that F4 = 65537, so

log10 (F4)≈ 24 log10 (2) = 4.8164 ≈ 5.

So, the estimated number of digits in the decimal expansion of F33 is 233 log10 (2)≈ 2585827972.98≈
2585827973 (obtained using Python); computing the number of digits in the decimal expansion of

F2478782 is much more difficult though. The interested reader can read up Pierpont primes, which are

prime numbers of the form

2u ·3v +1 where u,v ∈ Z≥0.

As part of the ongoing worldwide search for factors of Fermat numbers, some Pierpont primes have

been announced as factors. Consider m,k,n such that

22m
+1 is divisible by 3k ·2n +1.
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In 2003, Cosgrave, Jobling, Woltman, and Gallot discovered that the tuple (m,k,n) =

(2478782,1,2478785) works. Also, the first edition of Cox’s textbook was published in 2004.

Coincidence? The second and current edition was published in 2010, but it was only in 2011 that

Brown, Reynolds, Penne and Fougeron discovered a larger a larger m, with corresponding tuple

(m,k,n) = (2543548,2,2543551) □

Now, for the long-awaited moment — we are now ready to characterise constructible regular

polygons using the Gauss-Wantzel theorem (Theorem 9.5)!

Theorem 9.5 (Gauss-Wantzel theorem). Let n> 2 be an integer. Then, a regular n-gon admits

a straightedge and compass construction if and only if

n = 2s
r

∏
i=1

pi where s ∈ Z≥0 and the p′is are distinct Fermat primes.

Proof. Constructing a regular n-gon is equivalent to constructing the nth roots of unity 1,ζ , . . . ,ζ n−1

since they form the vertices of a unit regular n-gon. The roots of unity are constructible if and only if

ζ is constructible since powers of constructible numbers are constructible. We note that

ζ = exp
(

2πi
n

)
= cos

(
2π

n

)
+ isin

(
2π

n

)
is constructible if and only if cos(2π/n) and sin(2π/n) are constructible. Moreover, by the

Pythagorean identity cos2 θ = 1− sin2
θ , the regular n-gon is constructible if and only if cos(2π/n)

is constructible.

Let α = cos(2π/n). Over the field Q(α), note that ζ satisfies the equation ζ 2 −2αζ +1 = 0. Since

Q(α) consists of only real numbers, it follows that [Q(ζ ) : Q(α)] = 2. Then, by the tower theorem,

[Q(α) : Q] = φ(n)/2, where φ(n) is Euler’s Totient Function. This is because [Q(ζ ) : Q] = φ(n).

It now suffices to prove the following:

• The regular n-gon is constructible if φ(n) is a power of 2

• If φ(n) is a power of 2, then the regular n-gon is constructible

The former is obvious by the repeated application of the tower theorem. As for the latter, suppose

φ(n) = 2m. Then, Gal(Q(ζ )/Q) is an Abelian group of order a power of 2. The same is true for

Gal(Q(α)/Q). By the Fundamental Theorem of Abelian Groups that the Abelian Group G of order

2m has a chain of subgroups

{e}= G0 ≤ G1 ≤ G2 ≤ . . .≤ Gi ≤ Gi+1 ≤ . . .≤ Gm−1 ≤ Gm = G

with [Gi+1 : Gi] = 2 for all i, applying this to G = Gal(Q(α)/Q) and taking the fixed fields for the

subgroups of Gi, we obtain the required sequence of quadratic extensions. To complete the proof, it

suffices to show that a prime p with p−1 a power of 2 must be of the form 22m
+1. We omit it.
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Example 9.14. Prove that a regular pentagon is constructible.

Solution. Consider the equation z5 = 1. It is equivalent to (z−1)
(
1+ z+ z2 + z3 + z4) = 0. Since

ζ = e2πi/5 satisfies 1+ z+ z2+ z3+ z4 = 0, then 1+ζ +ζ 4+ζ 2+ζ 3 = 0. We purposely wrote it this

way so that the reader observes that

ζ +ζ
4 = 2cos

(
2π

5

)
and ζ

2 +ζ
3 = 2cos

(
4π

5

)
.

Hence, 1 + 2cos(2π/5)− 2cos(4π/5) = 0. By the double angle formula, it is easy to see that

cos(2π/5) satisfies the equation 4x2 + 2x − 1 = 0. Note that 4x2 + 2x − 1 is irreducible over Q
(show a contradiction when we attempt to factorise this polynomial into linear factors ∈ Q [x]), so

[Q(2π/5) : Q] = 2, and the result follows. □

Around 1640, numbers of the form 22m
+ 1 first appeared in Fermat’s correspondence. He knew

that they were prime for 0 ≤ m ≤ 4 and conjectured that this was also true for m ≥ 5, though he

never found a rigorous proof. In 1729, Goldbach’s first letter to the young Euler mentions Fermat’s

conjecture about 22m
+ 1. Euler was sufficiently intrigued to start reading Fermat’s letters. His first

paper on number theory, published in 1732, shows that F5 = 232 + 1 is divisible by 641, disproving

Fermat’s claim. Encouraged by this success, he went on to study other problems posed by Fermat over

the course of the next 50 years. For example, he defined φ (n) in his attempt to understand Fermat’s

little theorem.

Because of Euler’s negative result, there was little interest in Fermat primes until Gauss discovered

their relation to the constructibility of regular polygons. The first entry in his famous mathematical

diary, dated March 30, 1796, reads as follows:

The principles upon which the division of the circle depend, and geometrical divisibility

of the same into seventeen parts, etc.

The details of what Gauss proved about regular polygons appear in Section VII of his book titled

‘Disquisitiones Arithmeticae’ (Latin for ‘Arithmetical Investigations’). Gauss studied the equations

satisfied by periods (special primitive elements of intermediate fields) of the extension Q ⊆ Q(ζp),

where p is prime. Then, he applies his results to show that ζp is constructible when p is a Fermat

prime. Though he asserts that the converse is true, the first published proof is due to Wantzel in 1837.

Gauss describes which ζn are constructible when n is arbitrary (Theorem 9.5), though his proof is

again incomplete.

Gauss knew that a straightedge-and-compass construction of a regular 17-gon was a big deal. Rather

than give an explicit construction, he showed that

cos
(

2π

17

)
=− 1

16
+

1
16

√
17+

1
16

√
34−2

√
17+

1
8

√
17+3

√
17−

√
34−2

√
17−2

√
34+2

√
17.
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From here one can design a construction for the regular 17-gon, though it is inefficient. There is also

the story of Professor Hermes of Lingen, who in the 19th century, worked 10 years on the construction

of the regular 65537-gon.

Example 9.15 (Cox p. 273 Question 5). Let n ≥ 2 and ζn = e2πi/n. Suppose that n = 2s p1 . . . pr,

where p1, . . . , pr are distinct Fermat primes.

(a) Show that for s ≥ 1, ζ2s is constructible.

(b) Let a≥ 2 and b≥ 2 be positive integers. Assume that ζa and ζb are constructible and gcd(a,b) =

1. Show that ζab is constructible.

We have omitted (c) of the exercise, which states that since ζp1, . . . ,ζpr ,ζ2s are constructible, then

ζn is also constructible. Well, we briefly talk about this. Note that the Fermat primes are pairwise

coprime, and none of them is even, so p1, . . . , pr,2s are pairwise coprime. Since n = 2s p1 . . . pr, by

repeatedly using (b), the result follows.

Solution.

(a) [Q(ζ2s) : Q] = 2s−1, which is a power of 2. The result follows.

(b) By Bézout’s lemma, there exists x,y ∈ Z such that ax+by = 1. Thus, x/b+ y/a = 1/ab. Since

ζa and ζb are constructible, then ζ x
a and ζ

y
b are constructible. Thus,

ζab = e2πi/ab = e2πi(x/b+y/a) = ζ
x
a ζ

y
b .

Since the product of two constructible numbers is constructible, the result follows.

We conclude with some remarks about arc length. This was an important topic in the 17th and

18th centuries. For example, by inscribing a regular n-gon in the unit circle, one easily sees that

constructing the n-gon by straightedge and compass is equivalent to dividing a circle into n equal

arcs by straightedge and compass. Another example involves the lemniscate, which is the curve in the

plane defined by the polar equation r2 = cos2θ (Figure 10).

x

y

(−1,0) (1,0)

Figure 10: Lemniscate of Bernoulli

In 1716 Fagnano discovered a method for doubling and halving an arc of the lemniscate. In particular,

he showed that the circle of radius
√√

2−1 (see dashed circle in Figure 10) divides each quadrant

of the lemniscate into arcs of equal length. Hence, the lemniscate can be divided into eight equal arcs

by straightedge and compass.
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